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Abstract

The human face is an essential stimulus in our social life and
occupies a large proportion of digital content. The perceptual ap-
pearance of faces is important in computer vision, psychology,
digital media, and related fields. Various structural and color
features of faces have been studied over the years. However, the
study of perceptual glossiness of faces and its influence on fa-
cial skin color appearance is very limited. This study investigates
the relationship between perceived glossiness of facial skin, skin
roughness, and perceptual color attributes. Psychophysical stud-
ies were conducted to model perceptual gloss and its effects on
the perceived color appearance of faces. The investigation was
carried out across varying roughness levels and skin tones. The
results indicated that facial gloss influenced the perceived light-
ness of the facial skin, a phenomenon not observed to the same
extent in non-face objects included in the experiment. The effect
on lightness could partially be explained by a strategy of discount-
ing specular components for surface color perception. Observers
tended to focus on the brightest regions of the objects while avoid-
ing specular highlights to infer color attributes. The current find-
ings provide insights into understanding visual appearance char-
acteristics of face and non-face objects and will be useful for ac-
curate gloss and color reproduction of graphical generated faces.

Introduction

Face perception is an essential part of our social life. We reg-
ularly parse information about faces to distinguish familiar from
unfamiliar people, and to make inferences about social charac-
teristics like age, sex, personality, and emotion ([4], [31]). Face
perception is particularly salient early on, starting from infants
recognizing their mother ([14]). Human face processing con-
tinues to become more specialized relative to many other kinds
of visual stimuli, likely because of the heightened ecological
value of face information ([15]). Several facial surface properties
have prominent roles in face processing, including skin color and
gloss([21], [23], [13]). Neurophysiological evidence has shown
dissociated neural pathways for processing faces separate from
other types of objects, and that color perception of faces is im-
pacted more by memory color than other objects ([9]), further in-
dicating that color perception is uniquely sensitive for processing
faces. Skin appearance (including both gloss and color) is de-
termined largely by several biophysical properties, including hy-
dration, sebum, erythema, carotenoids, hemoglobin and melanin
([26], [20], [19]). These substances in the skin vary according to
an individual’s genetic characteristics, but can also vary consider-
ably due to changes in health, diet, emotion, and environmental
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factors. Aside from naturalistic face processing, facial stimuli oc-
cupy a large proportion of digital content, such as gaming, graph-
ics, and other visual media. Because color appearance is critical
for face perception, it is important to better understand how mate-
rial properties of digitally rendered faces influences their color ap-
pearance. In the current work, we focus on the interplay between
material surface roughness, perceived gloss, and color appearance
for digital faces, as well as for non-face objects.

Perceived gloss is largely attributed to specular reflection. In
reflection models, modulating refractive index, Fresnel reflection,
and roughness can vary different gloss attributes, such as specu-
lar gloss, contrast gloss, sheen at grazing angles, haze, distinct-
ness of reflected image gloss, and absence of surface texture gloss
([51, [12]). These parameters are sufficient to represent and re-
produce gloss for most materials. However, skin has particularly
complex optical properties. The layers of skin include the air-oil
layer; the outer layer, which is translucent and partially reflects
incident light; and the epidermis and dermis, which absorb and
scatter light, causing it to exit in random directions. Therefore,
skin reflection involves surface and subsurface reflection ([18],
[27]). Existing studies generally concerning face gloss do not
capture the complex optical properties of skin, including physi-
cal parameters like skin roughness. The proposed research uses
physically-based rendering techniques to to investigate how skin
roughness, varying across diverse human skin tones, influences
perceived gloss and color appearance.

Moreover, the visual characteristics of materials depend on
their optical properties. Gloss and color are among the most crit-
ical material attributes, each having a perceptual influence on the
other ([11]). For instance, lighter-colored surfaces tend to appear
less glossy than darker ones ([12], [6], [24]), and glossy surfaces
often appear more chromatic and darker than matte surfaces due
to the concentration of light at the specular reflection ([1], [3],
[7]). Additionally, a steeper luminance gradient makes diffuse ar-
eas appear darker ([17]), and perceived lightness is impact more
by diffuse reflection than by spatial average reflection ([29], [25]).
Finally, perceived gloss relies on visual cues that also affect color
perception. The dependence of perceived saturation and value on
the linear combination of specular coverage and the inverse of per-
ceived gloss increases with the surface orientation of the stimuli.
The specular component of reflection on relief-shaped surfaces
can complicate the separation of diffuse and specular highlights,
thereby affecting color appearance ([10]). While these studies
used physical or rendered objects as stimuli, mechanisms rele-
vant to face perception have been generally overlooked. The pro-
posed research addresses this gap by examining how gloss influ-
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ences color perception specifically for faces, relative to non-face
objects.

In summary, various factors, including material optical prop-
erties, physiological aspects, and perceptual mechanisms, con-
tribute to gloss perception and color appearance for both face and
non-face objects. Previous research has modeled perceptual gloss
and has demonstrated the influence of perceived gloss on color
perception, particularly for non-face objects. However, there is a
shortage of studies modeling perceptual gloss and exploring gloss
and color perception interactions for faces, whose uniqueness lies
in skin optical properties, sensory and cognitive mechanisms in
skin and face perception, and distinct neural pathways for face
processing from other objects. This study aims to fill this gap by
investigating the specific effects of gloss on color perception in
faces. The study explores how roughness and gloss affect per-
ceived lightness and chroma, via physically-based rendering to
simulate skin composition and structure. The research also aims
to investigate whether facial skin exhibits unique perceptual be-
haviors due to the geometric shape of faces. Accordingly, the
present study aims to investigate the impact of gloss on color ap-
pearance (i.e., lightness and chroma), and determine the degree
to which this influence differences between facial and non-facial
objects.

Figure 1: Tone-mapped low dynamic range image of background.
A high dynamic range image was used in rendering.

Experiment

A preliminary experiment demonstrated the exponential re-
lationship between the roughness in microfacet distribution func-
tion and perceived gloss in facial objects (Figure 2). The resulting
linear regression model is employed in this experiment to gen-
erate perceptually linear-spaced stimuli. The present experiment
is designed to investigate the influence of perceived gloss on the
color appearance of faces. Previous research has shown that the
representation and recognition of faces involve different neural
processing pathways and cognitive factors compared to other ob-
jects ([9]). Accordingly, two additional non-face object shapes
are included to determine if perceived gloss affects the color ap-
pearance of non-face objects in the same way. The experiment is
conducted for four different baseline skin color types.

Methods

The experiment employs a ‘method of adjustment’ experi-
mental methodology. Observers were presented with a single 3D
object on the left side of the screen and asked to match the color
appearance of a uniform color patch displayed on the right side of
the screen. A GUI for a sample trial is shown in Figure 3. The
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experiment included a total of 84 3D object stimuli, consisting of
3 different shapes, 4 baseline skin color types, and 7 perceptual
gloss levels, as illustrated in Figure 4. For the color appearance
matching task, observers adjusted the lightness and chroma of the
color patch. It was expected that varying levels of gloss would
influence the perceived color appearance of the objects, particu-
larly in terms of lightness. Additionally, we investigated whether
this influence varied depending on the object’s shape and baseline
color.

Stimuli

The experiment contains 84 stimuli. On the left side of the
experimental interface, an object image would appear with a ran-
domly selected shape (face, sphere, or blob), baseline color type
(lightest’, light’, ’dark’, ’darkest’), and gloss level (7 total lev-
els). The geometric shape of the face providing surface normals is
the initial model of FaceBuilder ([16]), which is a gender-neutral
3D face model without textures and shadings. To render images,
a physically based ray-tracing algorithm is used. To illuminate
the environment, an image based lighting techniques is utilized,
with a high dynamic range image shown in Figure 1. The ma-
terial optical properties were also defined by bidirectional scat-
tering surface reflectance distribution function (BSSRDF). In this
study, skin BSSRDF was estimated with a given diffuse scattering
coefficient, transmission coefficient (set to 1), microfacet rough-
ness, refractive index (set to 1.55), and the mean free path (0.0013
0.0009 0.0006 for RGB channels). The mean free path, the mean
distance of light path in the medium before scattering is the recip-
rocal of attenuation coefficient, ranging from 0 to 1. We addition-
ally chose to include the sphere-shaped object to represent a sim-
ple geometric shape with smooth, predictable material and light
interactions. The blob-shaped object was chosen to represent a
more complex shape with less predictable light interaction (edges
and contours similar to a face), but with less familiarity and social
relevance than a face. The 7 gloss levels of the objects were deter-
mined by the roughness function established in a preliminary ex-
periment, so the roughness values used in the experiment increase
approximately linearly with perceived gloss (Figure 2). The gloss
levels used represent ranges of perceived gloss from 0.2 to 0.7
with the interval of 0.08. The base four skin colors were selected
through clustering the Pantone SkinTone Guide ([22]) color sets
(measured with an il-pro spectrophotometer), using the k-means
clustering algorithm. From the resulted eight cluster centers, four
representative and distinct colors were chosen. The selected skin
colors had CIELAB values of: Lightest [39.93, 6.69, 6.21], Light
[37.25, 5.96, 8.74], Dark [31.09, 5.78, 8.05], and Darkest [28.83,
4.07, 5.15]. It should be noted that the colors values are from the
final renderings. The colors selected from the clustering results
and used as the diffuse RGB parameters do not exactly match the
final renderings, as the rendering process involves additional pa-
rameters beyond diffuse characteristics. The final stimuli colors
are labeled "Lightest’, ’Light’, Dark’, and ’Darkest’ to indicate
relative lightness differences, but do not correspond to any spe-
cific skin typology (e.g., Fitzpatrick, Monk).

Procedure

Fifteen observers participated in the experiment (age from
25-50, 9 females and 6 males, expert color science observers, all
have normal or correct to normal vision acuity, and normal color
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Figure 2: linear fitting to the relationship between mean perceived
gloss and logarithm of roughness. From top-left to bottom-right, 4
plots are for 4 color types: ’lightest’, "light’, *dark’, and ’darkest’.

vision). One object target image was displayed on the left side
of the screen for each trial. This target image had a randomly se-
lected shape type, baseline color type, and gloss level. The color
patch was displayed on the right side of the screen simultaneously.
Observers were asked to adjust the color of the patch to match
the target’s surface color. The color patches were able to be ad-
justed by observers using a keyboard along dimensions of light-
ness (CIELAB L*, using up/down keys) and chroma (CIELAB
C*, using left/right keys). The initial colors of the patch were
those extracted from a point-sample of the forehead region of
the rendered face images with 0 roughness. These point-samples
were selected as they did not include either specular highlights
or shadows, and were judged by the authors as having the most
diffuse area of the images. This initial color could be adjusted to
either increase or decrease along the L* and C* dimensions inde-
pendently, and the step size of each adjustment (key press) was 1
unit for each dimension (Figure 3, 4). The full adjustment range
was #20 L* and #10 C* of the initial color of patches. The re-
sponses included the final CIELAB L*, C*, a*, and b* values of
the color patch, as well as the L* and C* indices (representing
the steps of L* and C* adjustment, respectively). Each observer
completed a trial for each combination of target shape type (3),
baseline color type (4), and gloss level (7), for a total of 84 tri-
als. The monitor was calibrated to the SRGB color profile with
D65 white points (luminance: 100cd /m?) with primaries R(0.64,
0.33), G(0.3, 0.6), and B(0.15, 0.06) in CIExy.

‘Ghanga the color of the patch o match the targes SURFACE color

Figure 3: GUI for an example trial from the experiment
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Figure 4: Example stimuli used in the experiment. Face, sphere,
and blob-shaped objects with 7 gloss levels, for the *Light’ color

type.

Results and Discussion

The L* and C* indices were used in the subsequent analy-
ses. These indices represent a 1-unit step change of lightness and
chroma adjustment made by observers, respectively. The analy-
ses were conducted using these indices in order to normalize the
adjustment responses, so that relative changes along these dimen-
sions could be compared across the different color types. The
initial, point-sample colors (starting points in the experiment) had
an L* index of 21 and a C* index of 11, which are indices at the
center of adjusting matrices. Therefore, indices above (or below)
these values represent an increase (or decrease) in lightness and
chroma adjustments made to the color patches to match the target
object.

Linear mixed-effect models with random participant slopes
and intercepts were used to evaluate the effects of gloss level (7
levels of a continuous predictor), shape type (3 factors; faces,
spheres, blobs), color type (4 factors, ’lightest’, ’light’, ’dark’,
’darkest’), and their interactions, on adjusted L* and C* indices.
We report the results from the statistical analyses separately for
lightness and chroma adjustments. Reported values are returned
from F statistics ([2]). The responses of lightness and chroma
adjustment are also predicted using linear models in R ([28]).

Lightness Adjustment

There was a significant main effect of gloss level on light-
ness adjustment, F(1,14)=14.54, p=0.002, indicating that per-
ceived lightness generally decreased as gloss increased (B=-0.91,
SE=0.24). The main effect of shape type did not reach statistical
significance, F(2,13)=3.21, p=0.074. However, followup t-tests
indicated that faces (M=32.1, SE=0.83) were generally perceived
as darker than blobs (M=34.2, SE=0.66), t(14)=3.46, p=0.004,
but not spheres (M=32.4, SE=0.81), t(14)=0.42, p=0.68. There
was a significant main effect of color type on lightness adjust-
ments, F(3,12)=10.07, p=0.001. Generally, participants increased
lightness more for ’lightest’ colors (M=35.2, SE=0.65), followed
by ’light’ (M=33.6, SE=0.66), ’dark’ (M=33.2, SE=0.70), and
“darkest” (M=29.5, SE=1.03) color types. All pairwise differ-
ences among the color types were significant (ps < 0.005), except
for the difference between light” and *dark’, t(14)=1.21, p=0.248
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(Figure 5a, 6).

There was also a significant gloss level and shape type in-
teraction, F(2,13)=4.052, p=0.043, indicating that the influence
of gloss on lightness varied as a function of shape type. Per-
ceived lightness decreased as gloss increased for face-shaped ob-
jects (B=-0.55, SE=0.13), t(14)=4.29, p < 0.001, but this pattern
was not statistically significant for spheres (B=-0.13, SE=0.12),
t(14)=1.12, p=0.28, or blobs (B=-0.15, SE=0.12), t(14)=1.21,
p=0.25 (Figure 6 and 7).

There were no statistically significant interactions between
gloss level and color type, F(3,12)=1.27, p=0.33, between shape
type and color type, F(6,9)=1.32, p=0.34, or the three-way inter-
action among them, F(6,9)=0.74, p=0.63 (Figure 7).
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Figure 5: The mean (circles) of L* and C* index for various shape
and color types; Error bars represent standard error. Distributions
represent the frequency of L* or C* index of individual responses.

Chroma Adjustment

Our analysis also shows that there is no significant effect of
gloss level (F(1,14)=0.01, p=0.92) and shape type (F(2,13)=1.32,
p=0.30) on chroma adjustments. But a significant main ef-
fect on chroma, F(3,12)=3.56, p=0.047, due to color type is
observed. Generally, perceived chroma decreased from ’light-
est’ (M=12.0, SE=0.31), to ’light’ (M=11.6, SE=0.22), ’dark’
(M=11.5, SE=0.21), and ’darkest” (M=10.7, SE=0.14) color
types. All pairwise differences among the color types were signif-
icant (ps < 0.013), except for the difference between ’light’ and
“dark’, t(14)=1.10, p=0.288 (Figure 5b). Moreover, no statisti-
cally significant two-way or three-way interactions was observed
among these variables (ps > 0.41) (Figure 5b).
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Figure 6: predicted L* (lines) and mean of responses (dots) for 3
shapes, as a function of gloss level. Shaded area represents 95%
confidence intervals. Observers’ perceptions of surface lightness
generally decreased as gloss increased. This pattern was particu-
larly pronounced for face-shaped objects.
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Figure 7: predicted L* index (lines) and mean responses (dots)
for 4 color types, and 3 shapes, as a function of gloss level. On
average, observers increased lightness more in order from ’light-
est’ to ’darkest’ color types. These differences are larger for faces
relative to other shapes.

Image Color Analysis

In addition to gloss level analysis on color appearance, we
explored whether observer color adjustments corresponded to sys-
tematic patterns among regions of the images themselves. To do
this, we identified the image pixels that comprised CIELAB val-
ues having small color differences ( AE < 5 ) from the average
CIELAB values of observers responses. These pixels are shown
in color, with pixels outside of this range colored gray, in Fig-
ure 8. For each shape in each gloss level, AE is computed and
averaged across the 4 color types, such that the images shown
identify the objects’ regions-of-interest, rather than the precise
color of each object. This analysis speculates about the strat-
egy observers might have used to determine their representative
color matches, however it is worth noting that their decisions may
not have been determined according to specific areas of the ob-
jects necessarily. Additional data such as from eye-tracking or
pixel-selection methods in future work may be needed to confirm
these strategies. Because perceived chroma was not impacted by
changes in gloss, this section focuses on discussions regarding
perceptions of object lightness. These analyses indicate that the
image areas containing similar colors as observer responses are
largely near the edges surrounding the specular highlight, sug-
gesting that observers tended to use the brightest region of the
objects (but excluding the highlight area) when judging colors of
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the surfaces. This strategy likely becomes easier as objects be-
come more glossy, as the specular highlight edge becomes more
defined. This possibility is likely supported by the general de-
crease in lightness adjustments as gloss increased, as highlight re-
gions are more likely to be avoided and considered distinct from
perceptions of the surface color. The colored area is larger when
gloss level decreases for spheres and blobs but not faces (Fig-
ure 8). This indicates that the area representing surface colors
by observers is larger with decreasing gloss, possibly because the
boundary between diffuse reflection and specular highlight is less
sharp for more matte surfaces. It has been previously shown that
perceived lightness of objects was determined by diffuse reflec-
tion instead of mean lightness of the objects ([29], [8]), and that
observers judge the lightness of a object according to the area
neighboring the highlight region ([8]), which is supported in the
current work.

Figure 8: Image analysis corresponding to observer color
matches. Top-rows: pixels containing color values within AE <5
from mean observer responses are shown, with all other pixels
colored gray. Bottom-rows: original images for reference. Im-
ages increase in gloss from left-to-right. Note: images for only
one color type are shown, but these include spatial areas corre-
sponding to AE < 5 averaged across all color types.

General Discussion

Color appearance is indispensible in face processing and so-
cial perception. In digital graphics, faces are rendered by simulat-
ing light interactions with material properties like roughness, af-
fecting gloss and color perception. Understanding how these ma-
terial properties influence color appearance, especially in faces, is
crucial for improving interactions with digital characters in appli-
cations, such as gaming and animation.

The current study utilised the relationship between material
roughness and perceived gloss in face rendering for 4 skin color
types, to explore the influence of perceived gloss on color ap-
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pearance for faces, and non-face objects, having different base-
line colors. Notably, we found that perceptions of object lightness
decreased as gloss increased, but that this pattern was most evi-
dent for face-shaped objects, supporting the notion that process-
ing of facial stimuli operates in different ways than other kinds
of objects, most likely because faces are particularly familiar and
contain important social information, relative to abstract shapes.
Additionally, we did not find evidence that perceptions of chroma
were impacted by gloss, and therefore we will focus the discus-
sion on perceptions of lightness.

Previous research has demonstrated that the effect of gloss
on color of an object depends on the perceptual separability of the
specular highlight from the diffuse area. People tend to ignore
specular highlights when identifying surface body color ([29]). It
could also be the case that specular highlights are misattributed
to diffuse areas when surface colors are lighter and more matte.
Consequently, the perceived color of matte and lighter surfaces
are expected to have higher perceived lightness than more glossy
surfaces ([10]). These expectations were largely supported by
the current findings, as perceived lightness generally decreased
as gloss increased. Further, our image color analyses indicate that
the image areas containing similar colors as observer responses
were largely near the edges surrounding the specular highlight,
suggesting that observers tended to use the brightest region of the
objects (while excluding the highlight area) when judging colors
of the surfaces. This strategy likely becomes easier as objects be-
come more glossy, as the specular highlight edge becomes more
defined. Conversely, highlight regions for more matte objects are
more difficult to avoid, becoming less distinct from perceptions
of the surface color. However, discounting the highlights can only
partially explain this strategy, as it appears that the color matches
still included some highlight information, rather than darker, more
diffuse areas of the objects.

For the effect of color types on lightness adjustment, the
significant difference between ’lightest” and ’light’ and between
’dark’ and ’darkest’ indicate observers exaggerate lightness ad-
justments with increasing skin luminance. However, there was
no significant shape type by color type interaction on lightness
adjustment, indicating that this exaggeration happened for all
shapes. The lightness differences between ’lightest’ and ’light’,
’dark’ and "darkest’ are smaller than the difference between ’light’
and ’dark’. However, the visual difference between ’light’ and
’dark’ is approximately equal to the base lightness difference. The
other color type pairs (’lightest’ and ’light’, ’dark’ and ’darkest’)
have larger visual lightness differences than base lightness dif-
ference(Figure 5a). A similar pattern occurs in chroma adjust-
ment responses. The reasons for these visual difference patterns
in lightness and chroma responses found in the study should be
further investigated by future work.

The current study has limitations that future work could
address. Future research could improve the realism of facial
skin simulations by using actual optical parameters, such as
wavelength-dependent refractive indices for the epidermis and
dermis. Additionally, faces were rendered without realistic tex-
tures (e.g., eyes, hair) to facilitate comparisons with non-face ob-
jects, but it would be valuable to assess the findings with more
realistic faces. While material roughness was the primary in-
put used to generate perceptions of gloss, there are several other
dimension that would impact gloss and color appearance which
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were not evaluated in the current work (e.g., distinctness of im-
age and contrast gloss are function of diffuse reflectance compo-
nent, the energy of specular component and the spread of specular
lobe, of Ward’s model ([6]) ). In addition, the skin color selection
was based on the measured reflectance of the printed Pantone skin
set. However, the printed color set may be less representative that
real human skin measurement databases ([30]). Further, this ap-
proach summarizes spectral data with RGB values to represent
skin color, which certainly impacts how skin material would in-
teract in a light simulation.

Conclusion

The present study conducted experiments to evaluate the re-
lationships among material roughness, perceived gloss, and color
appearance, for faces and non-face objects having 4 baseline skin
tones . The results indicated that perceived lightness (but not
chroma) was influenced by gloss, which was most notable on
face-shaped stimuli. We also speculate that people tended to judge
surface color by largely (but not entirely) discounting specular
highlights. The current work demonstrates the value of evaluat-
ing the influence of material properties on color appearance for
digitally rendered objects, and particularly highlights the need to
consider face stimuli independent of other kinds of objects.
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