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Abstract 
Individual differences in normal trichromatic color                                              vision arise 

at many levels, from variations in the wavelength sensitivity of the 

eye to factors that influence how we see, categorize, and 

communicate about colors [1]. There is growing recognition of the 

value of accounting for these differences in order to provide more 

consistent   color percepts across observers. Most of these efforts 

have concentrated on correcting for differences in spectral 

sensitivity and associated effects on color matching. However 

spectral sensitivity differences have limited influence on color 

appearance, which can be large, and which may potentially be a 

more important source of variation in how people respond to and 

interpret color information. We describe a simple method for 

measuring observers’ hue percepts along with a technique for 

rendering images to compensate for inter-observer differences in 

appearance. The           approach is easy to implement and does not require 

specialized equipment and offers potential advantages for many 

color applications including data visualization and communication.  

Introduction 
While perception intuitively seems universal, individual 

differences significantly influence how we experience the world [2,3]. 

These differences affect most if not all aspects of sensory processing, 

from differences in basic sensitivity to high-level interpretations and 

inferences and ultimately conscious awareness. Variations among 

observers with normal color vision are well documented and  are 

pronounced at all levels of the visual system, from differences in the 

spectral transmittance of the eye’s optics to phenomenological 

judgments of color appearance [4–8]. As a result, two different 

observers viewing the same spectral stimulus may often have very 

different color experiences. 

There is growing interest in correcting visual displays to 

account for these different experiences, in order to increase 

consistency in the information perceived and communicated across 

observers. Thus far most of this effort has been focused on 

correcting for differences in spectral sensitivity, which result from 

differences in the density of lens  and macular screening pigments as 

well as the  absorption spectra and relative numbers of the of the cone 

photoreceptors [5,9,10]. These sensitivity variations affect color 

discrimination and color matching, and underlie the problem of 

observer metamerism, where two stimuli might appear different to 

one observer while identical to another [11,12]. These effects are 

exacerbated in modern wide-gamut displays, and there are active 

efforts to  control for them by building observer differences into 

color profiles. 

However, there is also a remarkable degree of observer 

variation in color appearance, for example in which stimulus appears 

achromatic or a particular hue (e.g. pure red or green). These 

appearance differences are largely independent of differences in 

spectral sensitivity [13]. Thus, corrections for spectral sensitivity do 

not address (or could even amplify) individual differences in color 

percepts. These perceptual differences may be more salient and 

impactful for how observers judge or communicate the visual 

information carried by color, yet very few studies have considered 

how images could be processed to address appearance differences. 

Recently we developed a simple procedure for correcting      images for 

differences in hue percepts [14]. A related approach has also been 

independently proposed by                Shin and Fairchild [15]. In this report we 

illustrate a               procedure for measuring hue percepts and then      show how 

these measurements can be used to adjust image chromaticities to 

potentially align hue percepts, so that two observers – now viewing 

different spectral stimuli – may have more similar color experiences. 

Color Appearance Measurements 

Method 

Participants 
Hue percepts were measured for 21 observers with normal 

color vision and normal or correct-to- normal visual acuity. Color 

vision was assessed by the Cambridge Colour Test (Cambridge 

Research Systems). The participants were undergraduate or 

graduate students at the University of Nevada, Reno. Participation 

was with informed consent and some of the students received course 

credit for enrolling in the study. Procedures followed protocols 

approved by UNR’s Institutional Review Board and adhered to the 

World Medical Association’s Declaration of Helsinki (2013). 

Experimental design 
Stimuli were presented on a Cambridge Research Systems 

Display++ monitor using custom algorithms built with Matlab and 

Psychtoolbox. The monitor was calibrated with a spectroradiometer 

(Photo Research PR 655) and subtended a visual angle of 33.6°x 

60°. Observers were seated at a distance of 60cm from the monitor 

and viewed the display binocularly in a dark room. 

Hue measurements were preceded by a minimum motion 

experiment used to assess individual differences in luminance 

sensitivity [16,17]. The technique is based on apparent motion driven 

by luminance differences in chromatic gratings and is  a standard 

technique for assessing when chromatic  stimuli are equiluminant. 

From the settings, correction factors were calculated to adjust the 

luminance of all stimuli so that they were equated for each 

individual observer. However, we note that this step was included 

because the present experiment was part of a larger study probing 

individual differences in color perception. Similar results for hue 

differences would likely be obtained if luminance was instead 

defined photometrically for all observers. 

In the hue experiment, stimuli were presented on a gray 

background with a luminance of 20 cd/m2 and the chromaticity of 
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Illuminant D65 (CIE 1931 coordinates: x: 0.313, y: 0.329). Stimulus 

chromaticities were defined based on a modified version of the 

Derrington-Krauskopf-Lennie (DKL) cone-opponent colour space 
[18–20], which represents the constant-luminance chromatic plane in 

terms of two axes corresponding to differences in the long- vs, 

medium-wavelength sensitive cones (LvsM) or signals in the short-

wavelength sensitive cones and the sum of the L and M cones 

(SvsLM). These two axes are called the “cardinal directions” of 

color space because they reflect the principal axes of color coding 

in the early visual system. The cone sensitivities were based on the 

fundamentals derived by Stockman and Sharpe and   the LvsM and 

SvsLM signals were scaled by factors of 2500 and 5000, 

respectively, so that a value (or “nominal contrast”) of 1 along each 

axis corresponded very roughly to the just-noticeable difference 

from the white point for each axis. 

For the display, 36 chromatic “chips” were shown arranged in 

a circle and sampling the color space at 10° steps from 0 to 360° at a 

contrast of 80 (Figure 1). Each chip had a diameter of 30 pixels (2° 

of visual angle) and had the same luminance (20 cd/m2) as the gray 

background, with narrow black borders delimiting the field. The 

array was shown to provide a visual map of the color space that 

observers could navigate to select different hues by using the mouse 

to control the cursor location on the screen. The chromaticities 

shown in the array were randomly rotated on each trial so that hues 

were not tied to a consistent spatial location, and observers were 

instructed that they were not restricted to the specific hues shown 

but could choose any angle along the circle for their  selection. The 

color currently selected was shown in 4 uniform square fields in the 

center of the palette, each subtending 4.3°. Using 4 fields rather than 

a single field was again because the hue experiment was part of a 

larger study involving tasks that required showing different colors 

in the fields. However, it is again unlikely that this choice  impacted 

the hue settings. 

 

Procedure 
Observers were asked to vary the mouse cursor around the 

palette to identify the best example of one of 8 hues identified by text 

at the bottom of the screen (Figure 1). The hues corresponded to the 

4 unique hues (pure red, green, blue or yellow), and 4 balanced 

binary hues (orange, purple, yellow- green, blue-green), for which 

the instruction was to choose the hue (e.g. orange) that appeared as 

an equal balance of the corresponding unique hues (e.g. red and 

yellow). The hue displayed in the center was alternated on for 0.25 

sec and gray for 0.75 sec while observers made their setting, with 

no time restrictions for responding. Moving the cursor around the 

circle varied the displayed hue, and a mouse click was used to record 

their choice. Each hue was measured 6 times in random order for 

2 separate sessions, for a total of 12 settings per hue. Results reported 

are based on the mean settings for each hue and observer

 

Figure 1. Example of the hue selection experiment. The          hue to be selected and repetition 

number were indicated at the bottom of the display. The example shows the display 

when the observer was selecting an “orange” hue, with the squares in the middle of the 

screen displaying the hue angle the participant is pointing at using the cursor. 

 

Results 
Our results are consistent with previous measurements using a 

variety of tasks showing that  hue percepts vary widely among color-

normal observers [21]. Individual values for each observer and hue 

are depicted in Figure 2. Figure 2a plots the angles for the loci in 

LvsM and SvsLM chromatic plane. Consistent with earlier work [21], 

three of the binary hues (purple, blue-green, and yellow-green) 

cluster along one of the cardinal  axes, while unique red straddles the 

remaining axis.  .However, differences between observers are so  

large that what some observers chose as the best example of yellow 

was selected as the best- balanced orange or yellow-green for others 

– i.e. in  some cases different observers classified the same stimuli as 

best examples of different color categories. The standard deviation 

in hue angle across observers averaged 7.58° and was 1.39 times 

larger than the standard deviation in the repeated settings (5.45°), 

suggesting that the  differences reflect actual observer differences 

and not measurement noise (Table 1). However, for some hues the 

within and between observer variance was similar. Figure 2b also 

shows that the settings for different hues were largely 

uncorrelated, which is also consistent with previous reports [21]. 

Figure 2c provides a visual depiction of the hue percepts. The 

palette shows the chromaticity selected by each observer for each of 

the 8 hues, with the mean or “standard observer” shown in the  first 

column. Again, this range is typical for many studies of individual 

differences in color appearance and shows that these differences are 

pronounced and can sometimes cause the same stimulus to be 

perceived as a different color category by different observers 

 

 

 

 

 

 

 

 

162 2024  Society for Imaging Science and Technology



 

 
2a. 

 

 

 

2b. 

 

 

2c. Figure 2: Individual differences in the settings for the eight hues tested. a) Individual 

hue foci of the 21 observers and the standard observer (black triangles), represented in 

the DKL color space. Each point corresponds to an observer’s focal color, based on the 

average of all the measurements in the two sessions. b) Correlations between the 

settings for different hue foci for the 21 observers. |c) Depiction of the stimuli 

corresponding to the focal colors (rows) for each observer. The first column is the 

Standard Observer, based on the average of all the participants. 

 
 R G B Y O P BG YG 

MEAN -4.00 228.2 143.2 299.6 321.0 89.3 179.9 276.1 

SD between-obs 12.1 9.73 7.30 6.09 7.50 12.1 7.82 5.02 

RANGE 37.7 37.2 29.4 24.6 34.3 58.4 29.1 22.9 

SD within-obs 4.36 6.59 3.60 3.91 3.26 7.74 7.36 6.81 

 

Table 1: Mean and standard deviation of hue settings between observers and within 

observers for the 8 hues tested. 

Color Appearance Corrections 

Method 
We used an algorithm detailed in Simoncelli and Webster [21] 

to adjust images to equate the hue percepts across observers. Briefly, 

a smoothed interpolation was fit to the hue foci as a function of the 

selected stimulus angle (Figure 3a and 3b). This allowed us to 

estimate for any stimulus angle the corresponding hue for the 

observer. For each pixel in an image, the hue was estimated for the 

standard observer base on the mean of the 21 individual functions. 

The fitted function for an individual      observer was then inverted to 

estimate the stimulus  angle that was predicted to produce the same 

hue percept for that individual, with the resulting chromaticity 

replaced in the image. 

 

 
3a. 

 

 
3b. 

 

Figure 3. a) The first step of the algorithm: estimation of the hue percept for each pixel 

RGB for the standard observer (black line). | b) The second step of the algorithm: for 

the same hue percept, we in turn calculated the RGB in the target observer (red line). 

Color patches show an example of the chromaticity  transformation. 

Results 
Figures 4a-4d illustrate the application of the algorithm. The 

upper left image shows the original  image while the three remining 

images are recolored based on the hue percepts for different 

individuals. Inspection of these images show that they appear 

conspicuously different for a single observer, and thus in principle 

illustrate the range of color percepts when different observers are 

looking at the same image. However, the hues experienced by these 

observers should instead be more similar when they are each viewing 

their own physically different image, since it has been corrected 

based on their individual hue percepts. 
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Figure 4. An example of the algorithm applied to an image. a) The original image. b-d) 

Examples of images adjusted for the individual hue percepts of three different 

observers. 

 

Discussion 
As noted, sensitivity differences are important to account for 

to ensure observers can discriminate similar information in color 

displays [22,23]. However, these sensitivity differences fail to capture 

individual differences in color appearance, because these are limited 

by fundamentally different factors [13]. These appearance 

differences are also pronounced and may be more salient for visual 

tasks where observers are judging or describing which colors they 

experience within the image, rather than simply trying to 

discriminate between colors. We, along with recent independent 

work by Shin and Fairchild [15], have shown that these differences 

can in principle be readily corrected by assessing color appearance 

and then applying these differences to the image chromaticities in 

order to match appearance. The assessments and corrections are 

simple and can be easily conducted on the displays of interest, 

unlike sensitivity assessments which may require specialized 

hardware. 

The present analysis represents a proof of concept rather than 

a definitive technique, and there are many outstanding questions to 

address in future studies. One is to refine the color appearance task 

to optimize the sensitivity and efficiency of the judgments. A 

second is to explore the number of hue settings that are necessary to 

fully characterize  the percepts. The lack of correlations between our 

unique and binary hues suggests that 8 may be desirable, though it 

remains to be evaluated whether fewer settings are sufficient. Yet 

another issue is whether other aspects of appearance, such as 

lightness and saturation, or individual differences in the achromatic 

point, are also important to include. Finally, further studies are 

needed to assess how well hue judgments based on  uniform fields, 

and rendered at the level of individual pixels, translate to color 

percepts in complex images. In terms of applications, a further 

important set of questions involves exploring which tasks or 

conditions these appearance judgments can facilitate. For example, 

they may be valuable in cases where color categories are used to 

convey different information. Conversely, the adjustments we 

propose may be disadvantageous for images where observers have 

strong priors for object colors (e.g. skin tones). Regardless, these 

adjustments address an important and thus far largely overlooked 

aspect of building the observer into color pipelines, and we believe 

one that will be important for optimizing consistency in the visual 

experience and interpretation of color in visual  displays. 
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