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Abstract

Biophysical skin appearance modeling has previously fo-
cused on spectral absorption and scattering due to chromophores
in various skin layers. In this work, we extend recent practical
skin appearance measurement methods employing RGB illumina-
tion to provide a novel estimate of skin fluorescence, as well as
direct measurements of two parameters related to blood distribu-
tion in skin — blood volume fraction, and blood oxygenation. The
proposed method involves the acquisition of RGB facial skin re-
flectance responses under RGB illumination produced by regular
desktop LCD screens. Unlike previous works that have employed
hyperspectral imaging for this purpose, we demonstrate success-
ful isolation of elastin-related fluorescence, as well as blood dis-
tributions in capillaries and veins using our practical RGB imag-
ing procedure.

Introduction

Modeling and measuring facial skin appearance have re-
ceived significant attention in computer graphics and vision due
to their crucial role in rendering realistic digital humans. Skin
appearance provides valuable insights into an individual’s health
and lifestyle [4, 22, 26]. This has led to extensive studies of skin
optical properties in tissue optics and dermatology. Researchers
have developed biophysically based skin appearance models in-
spired by tissue optics literature. These models simulate skin
reflectance response and various physiological effects, including
tanning, blushing/blood flow, and skin aging [8, 9, 20, 18].

However, these studies mainly focus on modeling skin
reflectance based on light absorption and scattering by chro-
mophores in skin layers, without considering skin fluorescence.
Auto-fluorescence is a natural skin function. Beyond light re-
flection, certain skin components - namely fluorophores - absorb
high-energy photons and re-emit them as lower-energy light at
longer wavelengths. This signal is exploited in the medical do-
main for the assessment of skin health and the detection of dis-
eases [22, 13]. These methods require complex optical equip-
ment, including UV response imaging, and are not easily scalable
to full facial measurements. Measuring the skin fluorescence can
enhance scattering simulations, improve albedo prediction, and
help infer mechanical properties for skin deformation modeling.

In this work, we present a novel method for the practical
measurement of skin elastin fluorescence using RGB imaging,
which allows us to separate spectral skin reflectance from flu-
orescence responses due to fluorophores. Our approach uses a
data-driven re-radiation matrix (also referred to as the Donaldson
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matrix [7]) to simulate the facial elastin fluorescence albedo re-
sponse to specific excitation-emission wavelength combinations.
Our method leverages spectral information without hyperspectral
equipment and identifies standalone entities of skin.

Additionally, our RGB measurements directly yield maps of
blood volume fraction and blood oxygen rate with minimal post-
processing. Blood volume fraction, which indicates the propor-
tion of blood volume within a tissue in both the dermis and epi-
dermis, is typically referred to as redness in dermatological skin
analysis [27]. In medical imaging, this quantity is usually es-
timated by magnetic resonance imaging (MRI) or computed to-
mography (CT) scans. The Antera device used in Gitlina et al.
[15] estimates a single redness map that is then mapped to two
hemoglobin parameters. Our blood volume fraction map achieves
comparable quality using RGB illumination rather than the dense
set of multispectral measurements required by the previous work.

We also measure the blood oxygen rate, which tracks the
transport of oxygen by hemoglobin throughout the skin. Together
with blood volume fraction, this provides a comprehensive map of
blood flow and tissue oxygenation across the face, neck, and ears.
Unlike most previous studies, our method directly isolates both
fluorescence and blood distributions using practical RGB mea-
surements, without relying on the assumption of a specific bio-
physical skin model.

Related Work

In this section, we give a brief overview of the recent stud-
ies most related to our measurements. For an extensive overview
of skin appearance measurement and modelling, please refer to
surveys on skin [17], facial appearance acquisition [30, 21] and
medical hyperspectral imaging [24].

Medical Analysis of Skin Optical Properties

Skin is a complex organ made up of various components act-
ing on multiple scales, producing a distinctive spectral signature.
Measuring the optical properties of skin provides a wealth of in-
formation about the health of an individual. This has generated
consistent interest in non-invasive, in-vivo skin measurements,
which have the benefit of obtaining direct measurements without
altering the skin tissue. Several key techniques have been devel-
oped, including diffuse reflectance spectroscopy [31], modulated
imaging [5], and spectral imaging [6, 28]. Hyperspectral imag-
ing [24] captures images across multiple wavelength bands. As a
highly useful non-invasive tool, it provides numerous data points
for analysis of optical skin properties.
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This information is usually processed using skin and optical
models, with the computation time increasing with the quantity
of information. Closest to our work, Gevaux et al. [10] employ
a hyperspectral camera setup to extract melanin, blood volume
fraction, and oxygen rate with a skin-model-driven optimization.
Later work [11] employs the same measurements but replaces
the optimization with a neural network, reducing acquisition time
from 5 hours to 2 seconds.

Biophysical Skin Measurement in Computer
Graphics and Computer Vision

Recent works have focused on both RGB and spectral mea-
surements of skin, acquiring physiological maps of skin in order
to better analyse, recreate and edit its appearance. Jensen et al.
[19] developed a subsurface scattering model for translucent ma-
terials and a rapid imaging technique using a focused white beam
to measure optical properties. Their approach efficiently simu-
lates light diffusion and color bleeding in materials like skin, milk,
and marble. Tsumura et al. [29] employed independent compo-
nent analysis of images using UV-B irradiation and topical chem-
ical application to retrieve melanin and hemoglobin maps for skin
appearance editing based on physiological data. Donner et al.
[9] developed detailed skin reflectance models using multispec-
tral imaging of skin patches, while other studies focused on facial
measurement with a color camera under uniform broadband illu-
mination to estimate skin properties [20]. This data was used to
estimate melanin and hemoglobin concentrations and the evolu-
tion of hemoglobin through facial expressions, following the pro-
tocol of [4],which employs controlled color imaging and spectral
analysis to generate parametric maps of pigmentation and blood
content. Gotardo et al. [16] proposed a multi-view setup using
static illumination to capture dynamic facial skin properties.

Measurements have been performed using broadband illu-
mination from a lightstage to estimate melanin and hemoglobin
concentrations and drive a morphable model of skin appearance
[2]. The work of Gitlina et al. [14] builds on this research to
produce maps of four different chromophores from RGB images,
using a skin model-based neural network and the combined use
of broadband and narrowband LED illumination. Aliaga et al.
[1] proposed a network to predict spectral skin reflectance in the
visible and the near-infrared range from RGB measurements.

We demonstrate that our method can directly measure blood
oxygen rate and blood volume fraction, providing a map that es-
timates two parameters previously studied: dermal and epider-
mal hemoglobin. Additionally, we capture a fluorescence sig-
nal induced by elastin. Unlike previous approaches, our method
achieves these spectral measurements from an RGB setup without
relying on an underlying biophysical skin appearance model.

Measurement Setup

Our experimental setup follows the monitor-based system of
Lattas et al. [23]. Illumination is provided by four 4K desktop
LCD monitors (Asus 347 ProArt PA279CV) arranged in a half-
circle around the subject, providing linearly polarized light for il-
lumination. Using four large monitors ensures adequate coverage
and spatially uniform illumination across the face of subjects.

These monitors create a nearly uniform half-hemispherical
lighting, minimizing intensity variations. While we employ these
specific LCD panels, any LCD illumination with a comparable,
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known Spectral Power Distribution (SPD) could be employed in-
terchangeably.

Images are captured using a Canon mirrorless camera (EOS
M6 Mark II) positioned directly in front of the subject and a sec-
ond camera facing the subject at a 45° angle. Both cameras are fit-
ted with linear polarisers, cross-polarized w.r.t the monitors. This
configuration enables specular-diffuse separation, following the
approach in Ghosh et al. [12].

The SPD of the LCD panels, determined with a spectrometer
(Sekonic SpectroMaster C700), is depicted by colored areas in
Fig. 1. Additionally, the spectral sensitivity of the camera’s RGB
channels, measured with a monochromator, is shown as plotted
lines in Fig. 1.
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Figure 1. Spectral power distributions of the RGB illumination of the LCD
panels as measured with a spectrometer (Sekonic SpectroMaster C700) and
spectral sensitivity of the RGB cameras (Canon EOS M6 Mark Il) used in this
work.

HDR images of illuminated faces are captured at different
exposures and under three distinct uniform illumination condi-
tions: narrowband red, green, and blue, displayed on LCD panels,
as illustrated in Fig. 2. These exposures are combined to extend
the dynamic range of radiance values. To ensure consistency, im-
ages are aligned using optical flow to eliminate motion artifacts.

Color calibration is not required in our approach because we
focus on capturing the normalized relative radiance across RGB
bands, which HDR provides. The spectra of these bands are
known and illustrated in Fig. 1. Unlike methods such as Gitlina
et al. [14], which rely on skin model matching and therefore re-
quire accurate colorimetric data for perceptual metrics and radio-
metric calibration, our method measures scene radiance per RGB
band. This inherently captures the spectral intensity information
necessary for fluorescence and blood distribution measurements,
eliminating the need for additional color calibration steps.

Isolating the diffuse response is particularly important as it
provides valuable information about the optical properties and
composition of scattering media such as biological tissues. Unlike
specular reflectance which follows the law of reflection, diffuse
reflectance typically involves multiple scattering events, creating
an optical signature unique to a material.

In our work we leverage the fact that diffuse light penetrates
deeper into skin layers, allowing for a non-invasive probing of
subsurface skin composition and structures.

2024 Society for Imaging Science and Technology



Figure 2. HDR images of a subject under red, green and blue illumination
emitted by the LCD panels in our setup. These diffuse illuminations reveal
skin components of different spectral sensitivities, penetrating different skin
depths based on wavelength.

Practical Fluorescence Measurement and
Analysis

Elastin is a key structural protein in skin that provides elastic-
ity and resilience [3]. Measuring elastin fluorescence and tracking
its evolution over time can inform us on the health and integrity of
the skin’s structure, indicating age-related processes and skin con-
ditions. Additionally, elastin helps collagen, the main scatterer in
skin, maintain its structural integrity.
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Figure 3. Excitation and emission spectrum of elastin protein in skin from

Pu et al. [26]. The excitation spectrum covers the lowest wavelength of the

visible spectrum which makes it an accessible skin fluorophores to measure

without the use of potentially harmful UV lights.

In this work, we aim to isolate elastin fluorescence using a
standard RGB camera under visible RGB illumination. By us-
ing a specific combination of LCD panel spectral power distribu-
tion (SPD) and camera sensitivity, we excite elastin fluorescence
at wavelengths above 400 nm, on the tail end of the excitation,
as shown in Fig. 3. This fluorescence appears in the green and
blue channels of the camera, along with reflectance and absorp-
tion from other skin components. To distinguish elastin fluores-
cence from other signals, we leverage the fact that elastin absorbs
UV and blue light and re-emits it at longer wavelengths. Specif-
ically, when illuminated by the blue light from the LCD panel,
elastin fluorescence generates a green signal in the camera’s green
channel.

The green channel captured under blue light contains fluores-
cence, blue reflectance, and a small amount of green reflectance,
as shown in Fig. 4. To isolate the fluorescence, we subtract both
blue and green reflectance by scaling the blue channel (captured
under blue light) and the green channel (captures under green
light) according to their respective contributions to the overall sig-
nal. Reflection and absorption are proportional to the stimulation
light and are scaled for accurate subtraction, while fluorescence,
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Figure 4. Plots of the different setup-specific spectral signals used to scale
the green and blue images of Fig 2 in order to compute the quantity of elastin
in skin depicted in Fig 5.

Figure 5. Facial skin elastin fluorescence maps simulated under a 365nm
Dirac excitation. The emission is computed based on predicted elastin quan-
tity per pixel and known elastin emission spectra.

due to its distinct excitation-emission process, remains isolated.

From these operations, we obtain a map of concentration of
elastin in the skin. We compute the response of this concentration
map to a UV illumination at 365nm as

F= /Q C(Ao)Em(2,) ( SPDEx(/Ii)I(/Ii)dJL,-)d/IO. )

Where C is the sensitivity of the camera sensor channel, Em
is the emission spectrum of the considered fluorophore, Q is the
domain of all possible emission wavelengths, Ex is the excitation
spectrum of the considered fluorophore, SPD is the wavelength
domain of the illumination and / is the intensity of the illumi-
nation at a specific wavelength. We chose 365 nm because it is
the peak of elastin response in skin as per the Donaldson matrix
of elastin computed with compiled data [26]. Fig. 5 is the result
of such a computation for an illumination that is a Dirac peak at
365nm in the UV.

The elastin fluorescence signal in Fig. 5 demonstrates a cor-
relation with skin thickness. Predominantly found in the dermis,
elastin concentration varies with the thickness of the dermis layer
across facial regions.
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Effectively, areas with thicker skin such as the forehead, nose
and cheeks show a stronger signal. Conversely, the eyelids, char-
acterized by thinner skin, display a relatively weaker signal. De-
spite the lips theoretically having thinner layers, their abundance
of elastin, crucial for elasticity, contributes to a strong signal. Re-
sults vary from one individual to another as depicted in Fig. 14.
Factors like age and gender influence elastin content and overall
skin thickness. Notably, individuals with higher melanin levels
tend to display less fluorescence due to melanin absorption, which
can directly impact elastin’s absorption and emission spectra.

Practical Measurement of Blood Volume
Fraction and Oxygen Rate

Computation of Blood Volume Fraction Map

In this section, we evaluate the proportion of blood in facial
skin tissue. This quantity, often referred to as blood volume frac-
tion, is key for understanding perfusion, oxygenation, and other
hemodynamic parameters.

In this method we employ diffuse lighting to probe into skin
layers, allowing us to analyze subsurface skin composition and
structures non-invasively. Fig. 6 shows four distinct curves repre-
senting the green and blue camera channel responses under green
and blue light. These curves, which are derived from the LCD
screen spectral power density and camera sensitivity, help us un-
derstand how light interacts with skin. To isolate the blood vol-
ume fraction response of the skin, we subtract the skin’s blue re-
sponse under blue light from its response under green light. This
subtraction isolates the signal in a narrow band around 450 nm,
where hemoglobin absorption is prominent (see Fig. 7a).

However, this signal still includes green reflectance that was
not eliminated by the initial subtraction. To address this, we com-
pute a second image in Fig. 7b by subtracting of the green skin
response under blue light from the same response under green
light. As shown in Fig. 6, this subtraction aligns and eliminates
the peaks of the green channel spectra, isolating the hemoglobin
response around 450 nm. Although this results in a noisier signal,
it provides a clearer indication of blood volume fraction.

Molar Extinction Coefficient (cm-1 /(mol/L)J»

1
w X

S

~-- Blue Channel Under Green Light
=-=- Blue Channel Under Blue Light
-------- Green Channel Under Green Light

Predicted Spectral Irradiance

0.03F @ Green Channel Under Blue Light
. Oxyhemoglobin Absorption H -5
0.04 . L . L
400 450 500 550 600 650

Wavelength (nm)

Figure 6. Green and blue camera channel spectral responses under green
and blue light, derived from LCD screen spectral power density and camera
sensitivity. We plot oxyhemoglobin absorption from compiled data [25].
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We generate the initial blood volume map (left in Fig. 7).
This method effectively isolates the hemoglobin response in the
face and the map reveals blood vessels in areas such as the cheeks,
ears, eyelids, and lips of the subject. The visibility of these ves-
sels is influenced by skin thickness, with female subjects, typ-
ically having thinner skin layers, exhibiting higher visibility, as
illustrated in additional results in Fig. 15.

A second map is computed by subtracting the green response
under blue light (negative dotted blue in Fig. 6) from the re-
sponse under green light (positive dotted green in Fig. 6). This
map (Fig. 7b) provides a noisier but more pronounced measure of
blood volume fraction.

Figure 7.  Preliminary maps of blood volume fraction (left and center) and
final results (right). The left image represents the subtraction of the blue
skin response under blue light from that under green light, while the center
image represents the subtraction of the green skin response under blue light
from that under green light (Fig. 6). Blood volume fraction maps in skin,
derived from the average of the first two blood maps, reveal a robust signal
for capillaries in the eyelids, ears, and lips with improved signal-to-noise ratio
compared to the initial blood maps.

Finally, we average the first two images in Fig. 7 to reduce
noise and obtain images of the blood volume fraction in skin,
mapping out the blood volume fraction in all upper layers of facial
skin as seen in Fig. 7c.

In Fig. 7c, the depicted subject is a light-skinned female. The
result map reveals heightened blood volume fractions in facial re-
gions, including the cheeks, lips, and areas around the eyes, as-
sociated with the presence of capillaries and blood vessels. Re-
sult disparities among subjects are shown in Fig. 15. Notably,
the maps demonstrate increased visibility in individuals with thin-
ner skin [18], wherein capillaries and blood vessels are closer to
the skin surface. Visibility is decreased in subjects with higher
melanin rates as melanin absorption interferes directly with the
capture of the signal.

Computation of Oxygen Rate Maps

Oxygen in skin plays an important role in tissue health and
wound healing. Oxygen levels in skin are influenced by external
factors such as environment, UV exposure, pollution and temper-
ature changes. Monitoring the oxygen rate in skin can yield im-
portant markers for skin health and metabolism. In this section,
we aim to evaluate the oxygen rate in facial skin tissue.

Fig. 8 shows various signals crucial for estimating the oxy-
gen rate map. These signals represent the detection of light
by a camera sensor channel across different wavelengths under
monochromatic LCD panel illumination. The red plot highlights
two peaks in red light reflection detection, with one peak aligning
precisely with the green reflection under green illumination.
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Figure 8. Curves in this plot represent signals crucial for oxygen rate map-
ping. The red curves display peaks of red light reflection (positive curves),
coinciding with peaks of the green reflection (negative curve). We plot de-
oxyhemoglobin absorption from compiled data [25].

In Fig. 9a, we generate a first oxygen rate map by analyzing
the skin’s green response under red light, denoted by the posi-
tive, dotted red curve in Fig. 8. This response includes deoxy-
hemoglobin absorption, along with peaks for green and red re-
flectance. To isolate the deoxyhemoglobin absorption, we sub-
tract the green response under green light from this signal. This
subtraction removes the green reflectance peak and any absorption
within the green bandwidth, as the green response under green
light, shown in Fig. 8, precisely matches the green reflectance we
want to eliminate.

Similar to the initial oxygen rate image in Fig. 9a, we con-
struct a second map in Fig. 9b. This is achieved by examining the
red response of the skin under red light, where the maximum re-
flectance is represented in positive dashed red in Fig. 8. We then
subtract the red response of the skin under green light, illustrated
in negative dashed green. In contrast to the left result in Fig. 9, this
second method enhances the signal of oxygen rate. This approach
enhances the oxygen rate signal and reveals veins containing de-
oxygenated blood, particularly visible on the temples and cheeks
of the subject. However, this method also increases green light
reflectance, which is noticeable in the resulting image.

In the final step, we reduce the noise level of the signal by
averaging the first two images in Fig. 9 and obtain Fig. 9c. This
process results in a clearer representation of the oxygen rate map-
ping in the skin, eliminating the reflectance observed in Fig. 9b.
Additional results are presented in Fig. 16.

Notably, deoxygenated veins become more prominent, par-
ticularly in the neck of male light-skinned subjects. The oxygen
rate is also more discernible, especially in individuals with lower
concentrations of melanin as well as thinner skin layers, com-
monly observed in female subjects.

Comparison

Our blood volume fraction map on the right in Fig. 10 repre-
sents what two separate hemoglobin parameters of a biophysical
skin appearance model employed in Gitlina et al.[15], namely der-
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Figure 9. Maps of Oxygen Rate within skin computed from the HDR images
under red and green illumination in Fig 2 and the plots in Figure 8. Interme-
diary results computed from the green and red camera channels respectively
(left and center) and final result (right).

mal and epidermal hemoglobin concentrations - C, and Cp,, rep-
resent. Our measurement process provides a direct observation of
this concentration without fitting to any specific skin model. Here,
we map our blood volume fraction map to the same visualization
color coding employed in [15] for the qualitative comparison.

Figure 10. Side-by-side comparison of dermal hemoglobin concentration
C,, (left) and epidermal hemoglobin concentration Cy, (center) based on the
skin appearance model employed by Gitlina et al. [15], with our own blood
volume fraction map (right).

We qualitatively compare our blood volume maps computed
with the method in the section above with the results of Gevaux
et al.[10]. In order to do so we match the visualization of Gevaux
with inverse maps of our blood volume maps and brighten our
oxygen rate maps. The comparison in Fig. 11 shows we are able
to retrieve a blood volume fraction map equivalent to previous
work while employing simpler capture hardware. Our signal for
oxygen rate is weaker but still enables detection without the use
of hyperspectral imaging.

Finally, in Fig. 12, we compare results with the same method
but using an RGB LED sphere as the capture setup. Our results
(top row) outperform those obtained using the RGB LED sphere
setup (bottom row), which utilizes a slightly different RGB cam-
era (Canon 800D) with ostensibly similar spectral sensitivities.
We plot the camera sensitivty and the Spectral Distribution of the
RGB LED Sphere in Fig. 13.

We find that the fluorescence map extraction and blood vol-
ume fraction map accuracy are compromised under the RGB LED
sphere illumination, likely due to a shift in the blue LED peak
(480nm) compared to LCD panels (450nm), which does not excite
elastin fluorescence. Additionally, the reduced gap between the
blue and green SPDs in the LED sphere causes mixing of melanin
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Figure 11.  Side-by-side qualitative comparison of blood volume fraction
(top) and oxygen rate (bottom) between Gevaux et al. [10] (left) and our
results (center and right).

Figure 12. Comparison of fluorescence, blood volume fraction and oxygen
rate obtained with our setup (top), and corresponding results obtained with
an RGB LED sphere (bottom).

and blood volume fraction signals. The oxygen rate map mea-
surement with the LED sphere proves to be the most aligned with
our results under LCD panel illumination, likely due to similar
spectral spacing between the green and red SPDs. This compari-
son indicates that the RGB SPDs of the LCD panel employed in
our setup are more optimal for our measurements than the SPDs
of the RGB LEDs of the LED sphere.

Additional Results

We present additional results respectively in front view and
45° angle view of elastin fluorescence in Fig. 14, blood volume
fraction map in Fig. 15 and oxygen rate in Fig. 16. Standard
photographs captured under white illumination are provided for
all subjects in the supplemental material, along with photographs
under our red, green and blue illumination as well as additional
results obtained from new subjects.
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Figure 13.  The spectral power distributions of the RGB illumination of
RGB LED sphere as measured with a spectrometer (Sekonic SpectroMaster
C700) and the spectral sensitivity of the RGB cameras (Canon 800D) used
for comparison.

As detailed in the sections above, we compute the response
of the elastin fluorophore in skin in Fig. 14 for an excitation of
365nm which represents the maximum of excitation for this pro-
tein.

Additional blood volume fraction images are presented in
Fig. 15. Blood volume fraction shows a consistent trend of fe-
male subjects possessing thinner skin layers and displaying more
easily networks of capillaries under the skin, particularly on the
cheekbones and eyelids, as well as in the lips and ears. The signal
varies from individual to individual but tends to be consistent with
thinner skin layers which can be due to gender, age or skin con-
ditions [18]. We compute the oxygen rate map, revealing veins
marbling the skin at the temples, forehead and cheeks of the sub-
jects.

Limitations: The fluorescence signal measured with our
capture process is weak due to RGB illumination. Additionally,
we cannot measure porphyrin fluorescence which is mostly ex-
cited by UV light. Our blood oxygen rate map, compared to hy-
perspectral imaging, captures areas of strong signal but lacks the
precision of results from narrowband illumination and measure-
ment.

Conclusion

Our study presents an innovative method for assessing skin
health by directly measuring elastin fluorescence, blood volume
fraction, and oxygen rate using standard RGB imaging with reg-
ular LCD panel illumination. This approach allows us to ana-
lyze key components of the skin’s circulatory system and elastin
structure without relying on complex skin models or hyperspec-
tral imaging, making skin optical property assessment more ac-
cessible and practical.

The main advantage of our method is its use of readily avail-
able, off-the-shelf equipment combined with real-time processing
capabilities. This makes it particularly valuable in scenarios re-
quiring rapid decision-making, such as medical imaging applica-
tions. Additionally, since skin models rely on optical properties
to accurately recreate skin appearance, our method provides a di-
rect and efficient way to measure fluorescence, oxygen rate, and
both dermal and epidermal hemoglobin concentrations, thereby
enhancing the accuracy of skin-model-based approaches.

2024 Society for Imaging Science and Technology



However, achieving the comprehensive detail offered by hy-
perspectral imaging, especially in capturing additional skin com-
ponents such as melanin, beta-carotene, and collagen fluores-
cence, remains a challenge. This represents a potential avenue
for future research to further enhance the scope and accuracy of
skin health assessments.
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Figure 14. Front View of Elastin Fluorescence Concentration Map
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