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Abstract 

Colors are characterized by their appearance attributes such 
as brightness, colorfulness and hue, or lightness, chroma and hue 
when considered relative to an adapted white. Consequently, they 
can be represented by coordinates in three-dimensional spaces like 
those of CIELAB or CIECAM02 appearance predictors. Therefore, 
the color of a stimulus is customarily associated with a point in 3D. 
While this is appropriate when dealing with theoretical quantities, 
in practice the color space coordinates of a stimulus are subject to 
variations both in the stimulus itself and in its measurements. This 
tends to lead to multiple measurements being the basis of identifying 
the color of a stimulus by averaging them and in some cases 
excluding outliers. This, however, obscures the fundamental 
variability of color data. In this paper an alternative, probabilistic 
approach to dealing with color data will be introduced and applied 
to the computation of color difference, color gamuts and gamut 
inclusion, yielding distributions of answers instead of only single 
values. 

Introduction  
When asking the question of what the color of an object or light 

source is, the expectation is to receive a single answer, when all 
relevant conditions are well defined. An example here could be to 
say that a certain print, under specific lighting, viewing and 
measurement conditions has certain colorimetry, as expressed in 
CIE XYZ, CIE LAB or other color spaces. While this may be 
unproblematic in a theoretical context, when it comes to practical 
use cases, the stimulus–colorimetry relationship is anything but this 
simple. 

For a start, the great majority of stimuli vary either because of 
variations in the environment they are viewed in (e.g., a print viewed 
even in a light-box is subject to variations of the light source’s 
output over time, with changes in ambient temperature, etc.) or 
because of variations in the devices used to bring them about (e.g., 
a display’s output is also subject to changes over time). A further 
level of variation arises when stimuli are generated in response to 
inputs to an imaging system. E.g., making a print repeatedly in 
response to a certain CMYK input to a system, even if that system 
has not been intentionally changed between copies, will result in 
varying physical properties. 

Added to the unavoidable variability of stimuli is also a 
variability of color measurement devices. Repeated measurements 
of a stimulus yield variations in the measured quantities since 
measurement instruments, like imaging devices, are subject both to 
systematic drifts, changes due to changing environmental conditions 
and random fluctuations. 

The upshot of such variability is that the question of what the 
colorimetry of a stimulus is is hard to answer with a single response. 
Repeatedly measuring the varying states of a stimulus results in 
varying measurements instead of a single one. 

A solution to such unwanted multiplicity is to take a set of 
measurements and derive from it a single set of colorimetries for a 

stimulus. This can be done by, e.g., computing the mean of such 
multiple measurements (e.g., Hunt and Pointer, 2011; Ly et al., 
2020), or some other central tendency of the data, such as their 
median, when distributions are not normal. The removal of some of 
“outliers” from the set of measurements before computing their 
central tendency is also a strategy that aims at greater robustness 
(e.g., ASTM, 2008). 

Such solutions to dealing with the variability of stimulus 
colorimetry are certainly good if the objective is to obtain stable, 
single colorimetries per stimulus. Their use is widespread in color 
science and engineering and has clear advantages versus using 
single measurements of stimuli. 

They do, however, have an important shortcoming, which is 
that they obscure variability and present a view of what 
colorimetries and their relationships are like. In the context of 
evaluating color differences, e.g., of a color match or of the color 
stability of an imaging system, they suggest a single state being the 
case while in reality such differences form distributions. The same 
applies to the question of what ranges or gamuts a set of color has, 
which also is not best expressed by a single boundary or a single 
volume but by their distributions. 

The following sections will set out an exploration of how color 
could be dealt with in a probabilistic way that preserves and 
expresses the variability of colorimetry in providing answers to 
questions about stimulus color, color difference and color gamuts, 
including the indication of which stimuli are enclosed by a gamut 
and which are not. Answers will be in the form of distributions, their 
central tendencies and percentage ranges derived from them. 

From means to all pairs 
A typical approach to quantifying the differences between two 

contexts is to first attempt their robust characterizations and to then 
compute differences between them. 

Let’s start with a simple scenario of wanting to quantify the 
difference between two imaging systems for a given input to them. 
E.g., in the case of printing, the question may be, how different is 
the color output of two printers, with their respective inks, substrates 
and settings, for a given CMYK input. One way to answer such a 
question would be to take that CMYK input, obtain multiple prints 
for it and measure each of those prints multiple times. Let’s refer to 
the number of printed repetitions on system 1 as p1 and the number 
of measurement repetitions of each of those prints as m1 and let’s 
use analogous nomenclature for system 2. 

The color difference between the mean outputs of the two 
systems can then be expressed as follows: 

𝐷!,# = 

∆𝐸 % !
$!%!

∑ ∑ 𝐶!('!,(!)
%!
(!*!

$!
'!*! , !

$!%!
∑ ∑ 𝐶#('",(")

%"
("*!

$"
'"*! ) (1) 

 

https://doi.org/10.2352/CIC.2024.32.1.22
©2024 Society for Imaging Science and Technology

114 2024  Society for Imaging Science and Technology



where ∆E() is a color difference equation and Ck is a color 
measurement from system k. In other words, the p1×m1+p2×m2 
measurements yield a single color difference, the color difference 
between the respective mean colors of the two systems. Fig. 1 shows 
an example of this approach for a case where p1=p2=2 and m1=m2=3, 
i.e., where two prints are made of the same CMYK input on each
system and each print is measured three times.

Figure 1. Measurements of the output of two systems for the same CMYK 
input, their means and the color difference between those means. 

The data for the example in Fig. 1 is shown in Tab. 1 and the 
∆E76 between the two mean colors is 5.15, with the ∆E00 (ISO/CIE, 
2022) being 2.81. 

Table 1: Example data visualized in Fig. 1 for print (P) 1 and two 
and measurements (M) 1, 2 and 3 on systems 1 and 2. 

P M System 1 System 2 
L* a* b* L* a* b* 

1 1 43.75 73.95 6.88 46.38 70.66 4.27 
2 43.75 74.02 7.22 46.25 70.89 4.78 
3 43.64 73.85 7.48 46.35 70.64 4.30 

2 1 44.07 74.24 7.09 46.54 70.43 4.24 
2 43.95 74.04 7.47 46.45 70.55 4.51 
3 43.91 73.95 7.36 46.59 70.28 4.40 

Mean 43.85 74.01 7.25 46.43 70.58 4.42 

While computing mean colors and then color differences 
between them is a good way to make the indication of color 
difference more robust to variations both in printing and 
measurement, doing so obscures those variations, which are an 
inextricable part of imaging and color measurement too. 

A further shortcoming of such an approach is also that the 
means do not actually correspond to any printed and measurement 
colorimetry (see the small red dots in Fig. 1 which indicate the 
means of the two sets of measurements, shown as larger green or 
blue dots). 

The approach to characterizing this same kind of data proposed 
here is one that characterizes the relationship between such two sets 
of measurements not with a single color difference value, but with a 
distribution of such values. Instead of computing a single color 
difference on the basis of p1×m1+p2×m2 measurements, all 
p1×m1×p2×m2 pair differences are computed as follows: 

𝐷!,#('!,(!,'",(") = ∆𝐸*𝐶!('!,(!), 𝐶#('",(")+ (2) 

In the case of our toy example, this yields 2x3x2x3=36 ∆Es, as 
shown in Fig. 2, with pair values shown in Tab. 2 and their 
distributions visualized in Fig. 3. 

Figure 2. Measurements of the output of two systems for the same CMYK 
input and all their pair color differences. 

Table 2: Pair color differences in ∆E76 and ∆E00. 
∆E76 S2 

p1m1 p1m2 p1m3 p2m1 p2m2 p2m3 
S1 p1m1 4.96 4.47 4.94 5.21 4.95 5.26 

p1m2 5.19 4.69 5.17 5.44 5.16 5.48 
p1m3 5.29 4.78 5.27 5.53 5.25 5.56 
p2m1 5.11 4.62 5.10 5.36 5.10 5.41 
p2m2 5.25 4.74 5.23 5.49 5.22 5.53 
p2m3 5.14 4.63 5.12 5.39 5.11 5.42 

∆E00 S2 
p1m1 p1m2 p1m3 p2m1 p2m2 p2m3 

S1 p1m1 2.81 2.61 2.78 2.96 2.84 2.99 
p1m2 2.87 2.66 2.84 3.02 2.89 3.05 
p1m3 2.99 2.78 2.96 3.14 3.01 3.17 
p2m1 2.60 2.39 2.57 2.75 2.63 2.78 
p2m2 2.75 2.53 2.72 2.90 2.77 2.92 
p2m3 2.76 2.54 2.73 2.91 2.78 2.93 

Looking at the 36 pair color differences in Tab. 2 and their 
distribution in Fig. 3 already gives a sense of the more varied, 
probabilistic nature of how the output of the two systems relates. 
Instead of simply stating that their mean colorimetries are 2.81 ∆E00 
apart, it is more representative to say that, while the mean of their 
pair differences is 2.81 ∆E00, it has an interquartile range of 2.73 to 
2.94 ∆E00 and a 95 percent range of 2.52 to 3.15 ∆E00. In other 
words, while the difference is 2.81 on average, half the time it will 
be between 2.73 to 2.94 and 95 percent of the time it will be in the 
2.52 to 3.15 range. 
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Figure 3. Distribution of pair differences in ∆E76 and ∆E00. 

Expressing the differences between the outputs of these two 
systems for a single input probabilistically also enables a 
probabilistic way of thinking about relationships versus thresholds. 
E.g., if an acceptability threshold for some color reproduction use
case were set at 3.0 ∆E00, then, instead of considering that the
difference between our systems is below threshold (based on a
difference between means of 2.81), it can now be stated that their
differences would be not exceed the 3.0 ∆E00 threshold in 87
percent of cases (since 3.0 is at the 87th percentile of the pair color
difference distribution).

Let’s next consider the impact of moving from comparing 
means to evaluating the color differences between all corresponding 
pairs on the descriptive statistics of whole sets of system inputs. 
Taking the set of 1485 CMYKs of the ECI2002 chart (ISO, 2006) 
that samples the full device color space, we obtain the statistics 
shown in Tab. 3. As can be seen, the inclusion of the pair ∆Es barely 
changes the central tendency of differences and even the effect on 
the 95th percentile is mild, with it being principally minima and 
maxima that are more significantly affected. 

Table 3: Descriptive statistics of color differences between 
printed outputs corresponding to 1485 device color inputs to 
two systems. 

∆E76 ∆E00 
Mean Pair Mean Pair 

Minimum 0.43 0.15 0.35 0.12 
Median 12.17 12.16 7.93 7.92 
Mean 13.01 13.02 8.42 8.43 
95th percentile 24.42 24.49 15.12 15.25 
Maximum 35.70 36.78 22.71 24.54 

As a consequence, there is little benefit from computing all pair 
differences when the aim is to understand the overall distribution of 
differences over a large set, while for an individual case they provide 
a relevant sense of variability and allow for a probabilistic 
understanding of tolerances. 

Even for large sets the computation of pair color differences 
per member does have value in that it allows for a characterisation 

of the distribution of variability across the set. Fig. 4 shows the 
histogram of 95th percentile ranges over the 1485 CMYK inputs and 
it can be seen both that they have significant medians (1.00 in ∆E76 
and 0.68 in ∆E00) and that they vary substantially from color to 
color, with a 95 percent ranges of 0.46–2.83 in ∆E76 and 0.29–1.71 
in ∆E00. 

Figure 4. Histograms of pair difference 95th percent ranges for 1485 ECI2002 
CMYK inputs to two printing systems in ∆E76 (top) and ∆E00 (bottom). 

In other words, only reporting summary statistics of the 
differences between the colorimetries obtained from the two 
systems does give a sense of the distribution of their magnitudes but 
supplementing them with the statistics of the 95 percent ranges also 
gives a sense of the variability of those differences. 

And back to means, assuming normality 
An alternative to computing pair differences is to characterize 

the distributions of colorimetries corresponding to the cases being 
compared and to then compute differences between those 
distributions and the confidence intervals of differences on the basis 
of per-distribution statistics. Assuming that colorimetries are 
samples from a normal distribution, their means (𝐶̅) and variances 
(Var(C)) can be computed as follows: 
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The difference of two normal distributions can then be 
characterized by the difference of their means and their pooled 
variance (Dodge, 2008): 

∆𝐶̅!,# = |𝐶̅! − 𝐶̅#| (5) 
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where n1 and n2 are the sample sizes of the two sets of 
colorimetries. 

Returning to the toy data set from the previous section, the 
colorimetries from Tab. 1 yield the following normal statistics (Tab. 
3). 

Table 4: Normal statistics of example colorimetries from Tab. 1. 
System 1 System 2 
L* a* b* L* a* b* 

𝐶̅ 43.85 74.01 7.25 46.43 70.58 4.42 
Var(C) 0.02 0.02 0.05 0.02 0.03 0.04 

System 1 – System 2 
L* a* b* L2 norm 

∆𝐶̅!,# 2.58 3.43 2.83 5.15 
Varp(C1,2) 0.02 0.03 0.04 0.05 

As can be seen, the L2 norm of the per-dimension differences 
between sample means of 5.15 is their ∆E76 color difference. The 
standard deviation of this norm can then be obtained by taking the 
square root of the L2 norm of per-dimension pooled variances of 
0.05, yielding 0.22. Finally, the two-tailed 95 percent range is ±1.96 
times this standard deviation, resulting in a range of 4.71 to 5.59. 
This compares with the 95 percent range computed directly from the 
pair differences of the two samples (Tab. 2) of 4.60 to 5.54, which 
in this particular case is a reasonable prediction of the pair 
differences derived from the normal statistics of the two samples. 

Looking at the relationships between these 95 percent ranges 
for ∆E76 (which can be predicted directly from normal statistics) 
between direct pair difference computation and prediction from per-
set mean and variance, Fig. 5 shows that the latter are a good 
approximation of the former with an R2 coefficient of determination 
of 0.837. At the same time, the individual sample sets of 36 pair 
differences per CMYK input do not pass the Kolmogorov-Smirnov 
(K-S) test (Smirnov, 1939) for normality at the 95% confidence 
level. 

Figure 5. 95 percent ranges for 1485 ECI2002 CMYK inputs predicted from 
normal statistics versus computed directly from pair differences. 

To test whether the failure of normality is related to the limited 
scale of the toy data set, a more extensive set was compiled, 
consisting of printing three copies of the same ECI2002 chart at 
three different moments in time and measuring each of them three 
times – i.e., a data set where 27 colorimetries were available on two 
systems in correspondence to the same CMYK input. Computing 

pair differences then yielded 729 ∆Es per CMYK. In this case the 
95 percent ranges had a coefficient of determination of 0.692 and 
again the K-S test for normality failed as for the much smaller, toy 
data set. Nonetheless, predicting 95 percent ranges from per-sample 
means and variances can be considered to be a useful 
approximation. 

Looking more closely at the first member of the large set, Fig. 
6 shows both the colorimetries from the two systems and the 
distribution of their pair differences. As can be seen, there are 
clusters among the colorimetries, which also correspond to clusters 
in the difference histograms that are not consistent with a unimodal, 
normal distribution. 

Figure 6. Colorimetries of first member of large dataset from two systems 
(top) and the histogram of their pair differences (bottom). 

Probabilistic gamut volume 
Given the variability of colorimetric data, their volume – or the 

color gamut – also results in variation and instead of having a single 
volume, reporting a range or distribution is required. 

The aforementioned set of 27 prints and measurements of the 
same CMYK data on two systems can first be analysed as individual 
sets of measurements of the 1485 samples of the ECI chart. This 
yields the results shown in Table 5, where gamut volumes are 
computed following the ISO specification (ISO, 2022) for discrete 
data, using alpha-shapes with a constant value of alpha=40. 

Table 5: Color gamut volumes (LAB) – statistics over 27 sets of 
prints and measurements 

System 1 System 2 
Min 443,749 425,165 
Mean 447,449 430,418 
Median 447,930 430,705 
Max 452,179 433,896 
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This would result in a 1.9% and 2.1% range of variability 
between the smallest and largest volumes for System 1 and System 
2 respectively.  

However, for each of the 1485 samples, each of the 27 
measurements is a valid possibility, hence any combination of 
picking one of 27 samples for each of the patches is a valid 
representation of colorimetry for the full chart. While evaluating all 
such possibilities is prohibitive (with a total of 271485 possible 
charts), the maximum volume can be had easily by computing the 
volume of all 27 data sets pooled into one. For the mean volume, the 
volume of the mean measurements can be computed. Instead, the 
smallest volume can be estimated by computing the volume of all 
those samples that are closest to an interior point such as [50, 0, 0]. 
Since strict convexity cannot be assumed, this may not yield the 
exact minimum gamut. On the other hand, the gamuts considered 
here are close to convex, so this simple approach will yield a good 
approximation. Likewise other possible charts can be constructed by 
randomly selecting one of the 27 possible measurements for each of 
the 1485 patches and repeating such selection many times. 
Generating over 1M such possibilities results in a sampling of these 
possibilities and as before, the Kolmogorov-Smirnov test for 
normality fails at a 95% confidence level. 

Tab. 6.a shows statistics of additional valid color gamut data 
points for each system, such as the gamut of the mean colorimetry, 
the near-minimum and maximum volumes. 

Table 6.a: Color gamut volumes (LAB) – near-min, mean, 
maximum 

System 1 System 2 
Near-Min 440,563 422,489 
Mean color gamut 447,729 429,911 
All max 455,941 438,377 

Taking the above data points into account, System 1 has a 
gamut volume range of 440,563 (near-minimum) to 455,941 
(maximum) LAB units, resulting in a range of 3.5%, while System 
2 has a gamut volume range of 422,489 (near-minimum) to 438,377 
(maximum) LAB units, corresponding to a 3.8% range. Fig. 7 shows 
the near-minimum and maximum gamuts for System 2. What can be 
seen in Fig. 7 is that the differences are well distributed in a*b* 
terms, while in L*b* terms there is a bias in differences towards the 
darker colors. This is not unexpected since measurement noise may 
be larger for darker samples. 

In Tab. 6.b all data is taken together, also including 1M random 
choices as well as all other possibilities to express valid gamuts. 
Note how the mean of the random samples is different again, 
compared to the mean color gamut and the color gamut of mean 
colorimetries. Further note how considering the 95% range, the 
gamut volumes only vary 0.4% and 0.5% for System 1 and System 
2 respective, assuming normality, or 0.3% to 0.4% without the 
normal assumption. This is to be expected since sampling all 
possibilities will be biased towards the mean and therefore even 1M 
random samples (an insignificant fraction of all choices) do not 
represent the variation sufficiently well. 

Figure 7. Near-minimum (solid color) vs maximum (black mesh) color gamut 
in CIE a*b* view (top) and CIE L*b* view (bottom), showing the largest 
variation of gamut volumes and the distribution of differences for System 2 
(corresponding to a 3.8% range). 

Table 6.b: Color gamut volumes (LAB) including 1M random 
gamut volumes 

System 1 System 2 
Mean (1M samples) 448,093 430,521 
5% Conf. Interval 447,250 429,511 
95% Conf. Interval 448,937 431,532 
5th %tile 447,392 429,677 
95th %tile 448,807 431,372 

Note also how the mean gamut (i.e. the average over 27 gamut 
volumes) in Tab. 5 differs from the mean color gamut (i.e. the color 
gamut of the mean colorimetries) in Table 6.a as well as the mean 
over the 1M samples in Table 6.b, even though all are quite close. 

In summary, instead of thinking that a given system has a 
gamut volume of e.g. 447kLAB units (the mean gamut from Table 
5, System 1), a probabilistic way that takes variation into account is 
to report 441kLAB to 456kLAB as the gamut volume range of 
System 1. 
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Probabilistic gamut coverage 
The normal approximation of multiple colorimetries per color 

set member also lends itself to being extended to computing gamut 
coverages in a probabilistic way. This can be done by tracking not 
only mean colorimetries per set member, but also their variances and 
by characterizing a gamut boundary not only in terms of a 
triangulated surface of mean colorimetries but also by variance over 
such a surface. 

This can be done as follows, assuming within-triangle variance 
convexity: 

1. Compute means and variances of per-member
colorimetries.

2. Construct a color gamut based on mean colorimetries.
Here the alpha shapes method (Edelsbrunner and Mücke,
1994; Cholewo and Love, 1998) will be used, with an
alpha value of 40. This yields a triangulated surface.

3. Given a test color T, with its mean colorimetry and
variance, find P – the nearest point to T on the gamut hull
from step 2.

4. Compute the barycentric weights of P within the gamut
hull triangle that contains it.

5. Apply the same barycentric weights, derived from
colorimetry, to the per-vertex variances to obtain the
variances corresponding to P.

6. Given P and T, with their respective variances, compute
the distance between P and T and the pooled variance of
that distance using Eq. 5 and 6. The result is a distance
distribution from which, e.g., 95% or interquartile ranges
can be computed.

Fig. 8 illustrates the computation of pooled variance for a point 
on a gamut surface. Applying this approach to the extensive data 
sets referred to before, it is possible to derive the mean + variance 
gamut hull of one data set and then compute not only the proportion 
of in-gamut colors from the other data set based on mean 
colorimetries, but also obtaining a range of coverages at different 
ranges within the per-member distributions, such as the 95% range. 
Fig. 9 then shows the gamut boundary of one of the two systems 
where the norm of per-dimension variances is shown at each vertex. 
It can be seen both how variances differ from color to color and that 
their values can be used to predict variance across the full gamut 
hull surface. 

Figure 8. Barycentric convex combination of gamut hull vertex G variances, 
resulting in variance at closest point on gamut P to test color T. Variances 
shown only in one dimension for illustrative purposes. 

Figure 9. The gamut boundary of one of the extensive data sets, showing the 
norm of per-dimension variances at each vertex. For ease of illustration, circle 
radii indicating variance are 50x the actual variance value. 

Taking a member of the System 2 data set as a test color, with 
CIE LAB values of [22.1, -7.8, -22.1], variances of [0.096, 0.015, 
0.041] and an L2 norm of 0.11, we can find the nearest point to it on 
the mean gamut of System 1 at a distance of 1.37 ∆E76, with CIE 
LAB coordinates of [23.2, -7.7, -21.3], a pooled variance based on 
the enclosing surface triangle’s vertex variances of [0.085, 0.031, 
0.103] and L2 norm of 0.14. Given the variances, we can determine 
a range of distances between the test color and the gamut with a 95% 
range of 0.70 to 2.04 ∆E76. In other words, instead of thinking that 
the out-of-gamut distance is 1.37, a probabilistic treatment of the 
question predicts that the distance will be in the 0.70–2.04 ∆E76 
range 95% of the time. Another way to express this relationship is 
to say that the probability of the test color being no more than 1.0 
∆E76 out-of-gamut is 16% in this case and that the probability of it 
being no more than 1.5 ∆E76 is 64%. 

Applying the same process to the full 1485-member System 2 
mean data set and evaluating each member’s signed distance to the 
System 1 mean gamut yields a probabilistic view of gamut coverage. 
Instead of resulting in a single coverage percentage based on mean 
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data of 79.46%, a 95% range can also be obtained, which in this case 
is between 72.67% and 89.95%. Computing distances based on 
means and obtaining their variances based on pooled test color and 
closest gamut hull color variances results in distance ranges as 
shown in Fig. 10, where negative values correspond to interior and 
positive values to exterior points relative to a gamut hull. In other 
words, a negative value indicates the distance from an interior point 
to the nearest point on the hull that contains it (i.e., large negative 
values mean that a point is deep inside a hull), while a positive value 
represents the distance between an exterior point to the nearest point 
on a hull. 

Figure 10. Signed test color to gamut hull distances for 2.5th, 50th and 97.5th 
percentiles. 

Figure 11. Probability of inclusion in System 2 gamut of color distributions 
with mean L*=50. (Top) full gamut view, (bottom) zoomed in boundary region. 

In effect, dealing with color probabilistically also means a shift 
from considering whether a color is inside a boundary to asking what 
the probability is that a color’s distribution of possible values is 
inside a boundary, also defined by its probabilities. To illustrate this, 
Fig. 11 shows the likelihood of a color with its mean L* at 50 and 
with a variance that matches the mean variance of System 2 being 
inside the mean gamut of System 2, given the boundary’s variances. 

Conclusions 
While the color of a stimulus can theoretically be expressed by 

a single set of appearance attribute values, such as its brightness, 
colorfulness and hue, in practice any measured data about a stimulus 
forms a distribution. As a consequence, the question about how far 
two colors are in some color space is not one about the distance 
between two points, but about the distance between two 
distributions. By extension, other color-related entities, derived 
from multiple color stimuli, also become statistical. In the case of 
color gamuts, a 2D boundary in 3D becomes a probability map 
where any color coordinate can have inclusion probabilities 
continuously ranging from zero to one. 

The atomic entity of a color stimulus therefore is not a set of 
coordinates but a set of descriptive statistics. This paper illustrates 
how such a move impacts three common color analyses of 
ascertaining the color difference between two stimuli or imaging 
system outputs for two inputs, of determining the range of colors 
that a system can reproduce, and of determining the inclusion of a 
stimulus in a color gamut. Using a statistical approach then yields 
ranges of values at given confidence levels or probabilities of the 
answer being above or below a given threshold, which more fully 
captures the nature of color analysis based on measured data and for 
systems with variable output. 

While it is not always feasible to have the amount of data 
available that was used in this analysis, having a system 
characterization done once extensively and deriving variability 
thresholds as described would then allow to use these to interpret 
single data points or few repetitions and still handle color properties 
in a probabilistic way. 

Future work could consider how the statistical approach to 
color stimulus specification introduced here can be applied in other 
contexts, e.g., that of psychophysics and psychometrics, and to other 
computations performed over a set of color stimuli, e.g., modelling, 
optimizations and machine learning. 
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