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Abstract  
Preserving perceptual quality of the tone mapped images is 

one of the major challenges in tone mapping. Most traditional 
tone mapping operators (TMOs) compress the luminance of high 
dynamic range (HDR) images without taking account of image 
color information, resulting into less natural or preferable 
colors. Current color management algorithms require either 
manual fine-tuning or introduce lightness and hue shifts. An 
adaptive color correction model is proposed to address color 
distortions in tone mapping. It is based on the CIECAM16 to 
compute perceptual correlates, i.e., Lightness, Chroma and Hue. 
Regardless of the tone mapping technique, the proposed model 
recovers natural colors of tone mapped images for spatially 
invariant and variant operators, making it an effective 
postprocessing technique for color reproduction. Unlike other 
models, it requires no gamut mapping correction, reproducing 
more accurate hue, chroma, and lightness. The algorithm was 
evaluated using objective and subjective methods, revealing that 
it produced significantly better color reproduction for tone 
mapped images in terms of naturalness of the colors.  

Introduction  
The HDR representation offers an unlimited tonal range and 

prioritizes the preservation of fine details [1]. It allows for a more 
immersive visual experience when viewing movies, taking 
photographs, playing computer games, or inspecting 
visualizations [2]. However, most current display devices are not 
equipped to handle such rich visual content. This is where a TMO 
comes in, which adjusts the tonal range of HDR data to match 
the capabilities of the display device.   

In the process of tone mapping, color distortions such as 
incorrect hues, saturations, or brightness levels occur leading to 
low perceptual quality in terms of unnatural or unattractive 
images. For instance, consider a high dynamic range image with 
colors from bright reds to deep blues. The reds and blues are well 
separated and easily distinguishable in real scenes. However, 
when the HDR image undergoes tone mapping, the tonal range 
reduction may cause the reds and blues to become closer in hue, 
leading to a loss of color distinction (refer to Figure 1). It can 
result in the reds appearing more orange, the blues appearing 
more purple, or the overall image appearing more washed out. It 
can be noticed in Figure 1 (a)-(d), Li TMO [3] produced an 
overly saturated image, Liang TMO [4] changed the hue of the 
image, Hui TMO [5] also suffered from saturation and hue 
changes while Meylan [6] TMO overlay desaturated the tone 
mapped image.   

Most color adjustment schemes are based on manual 
adjustments of parameters per image and tone mapper, such as 
Schlick’s nonlinear saturation model [7] and Mantiuk’s Linear 
model [8]. Schlick’s model introduces lightness shifts, while 
Mantiuk’s model introduces hue shifts, apart from the manual 
adjustment of parameters. Mantiuk proposed automatic selection 
of the saturation parameter in linear and nonlinear models by   

 
Figure 1. Color distortions caused by various TMOs. (a) Li’s TMO, (b) 

Liang’s TMO (c) Hui’s TMO and (d) Meylan’s TMO.  

conducting psychophysical experiments; however, these models 
are limited to the spatially invariant TMOs [8]. The models do 
not reproduce the colors appropriately for spatially variant 
operators since the parameter prediction involves derivatives of 
the contrast mapping function, and the regions where contrast 
changes are very high become unnecessarily desaturated. If the 
hue in the images is distorted, these models do not correct it; 
instead, Mantiuk’s models introduce the hue shifts.   

Artusi [9] proposed an automatic saturation adjustment for 
tone mapped images by scaling the chroma in ICh color space by 
ratios of the tone mapped image intensity and chroma with the 
HDR image intensity and chroma, respectively. It introduces 
lightness shifts. However, the scope of a TMO is to compress the 
contrast, and the aim of color correction as a post-processing step 
is specifically to correct the colors without altering the lightness 
of the original tone mapped image. In the method, gamut 
correction is needed as the chroma is scaled by the intensity and 
chroma ratios. The chroma is desaturated to correct out-of-gamut 
pixels resulting in less optimal colors. If the desaturation step is 
not applied, hue shifts occur due to out-of-gamut pixels. Hence, 
in Artusi method, either hue shifts occur or the chroma is less 
optimal. Moreover, the method overly desaturates tone mapped 
images for the abovementioned reasons.  

The human eye is strongly influenced by its viewing 
conditions. The luminance and colorimetry information of the 
light source play critical roles in visual adaptation. Color 
appearance models (CAMs) such as CIECAM02 [10], 
CIECAM16 [11] and ZCAM [12] are essential in understanding 
these mechanisms. They operate through processes that includes 
chromatic adaptation and tone compression. The models 
accurately predict various visual effects including Hunt’s and 
Steven’s effects. The input parameters to the CAMs are surround 
conditions and the stimulus, and the output parameters include 
color appearance attributes including lightness, chroma and hue.  

This paper introduces an efficient and effective color 
postprocessing technique based on the CIECAM16 to compute 
perceptual correlates. The lightness of the tone mapped image is 
computed using CIECAM16 and the surround conditions of the 
tone mapped image. Afterward, the hue and chroma are computed 
under display conditions from the HDR image by employing tone 
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mapped image lightness and CIECAM16 color adaptation 
equations. The proposed model recovers natural colors regardless 
of the tone mapping technique as the CAMs are developed based 
on psychophysical experiments to predict the natural appearance 
of the attributes. Furthermore, this approach does not require any 
gamut mapping correction algorithms, facilitating optimal color 
reproduction with ease.  

Proposed Model  
The color correction model (CCM) requires both a 

tonemapped image 𝐼𝑡 and its corresponding original HDR image 
𝐼𝐻, without any processing, to compute the hue and chroma that 
the model aims to reproduce. Both images must be in the linear 
RGB color space. HDR images typically exist in the linear 
domain, but accurate radiometric values are often unavailable, 
making luminance values inherently relative. The XYZ value  
(𝑋𝑇,	 𝑌𝑇,	 𝑍𝑇) of the tone mapped image (𝑅𝑇,	 𝐺𝑇,	 𝐵𝑇 ) may be 
obtained by using sRGB to XYZ conversion matrix or if the 
image is present in other color space then the specific color 
conversion matrix must be applied.  

The proposed color correction model (CCz) aims to 
reproduce the hue and chroma from the HDR image while 
preserving the lightness of the tone-mapped image. The 
workflow for the CCz, depicted in Figure 2, uses CIECAM16 and 
requires specific surround and display conditions to compute 
color adaptations. Surround conditions may differ for the 
tonemapped image and the final display image. There are two 
types of surround conditions used in the algorithm: 1) to compute 
the lightness of the tone mapped image, using the adaptation 
luminance 𝐿𝑎𝑇, background luminance 𝑌𝑏𝑇 and, white point [𝑋𝑤𝑇,	
𝑌𝑤𝑇,	𝑍𝑤𝑇] and 2) to compute the hue and color adaptation from 
the HDR image under display conditions, using the adaptation 
luminance 𝐿𝑎𝑑, background luminance 𝑌𝑏𝑑 and white point [𝑋𝑤𝑑,	
𝑌𝑤𝑑,	𝑍𝑤𝑑].  

The algorithm begins by calculating the lightness of the 
tone-mapped image and then adapts the colors from the HDR 
image, as detailed in subsequent sections. The lightness 
calculation of the tone-mapped image using CIECAM16 follows 
a typical workflow. Since the colors are adapted from the HDR 
image, detailed equations for each step are provided to ensure 
clarity and prevent misapprehensions.  

Lightness Calculation  
To determine the lightness of the tone-mapped images, first 

calculate the achromatic response 𝐴𝑤𝑇 corresponding to the tone-
mapped image white point [𝑋𝑤𝑇,	𝑌𝑤𝑇,	𝑍𝑤𝑇], and the achromatic 
response of tone-mapped image 𝐴𝑇. Since the image is tone-
mapped, the surround conditions related to the tone mapped 
image are to be used, i.e., 𝐿𝐴𝑇 and 𝑌𝑏𝑇. Calculate the input 
parameters of CIECAM16 color appearance model using tone 
mapped image white point (𝑋𝑤𝑇,	𝑌𝑤𝑇,	𝑍𝑤𝑇) as follows.  
𝑅𝑤𝑇	 𝑋𝑤𝑇 
(𝐺𝑤𝑇)	=	𝑀𝐶𝐴𝑇16	(𝑌𝑤𝑇	)  (1)  
𝐵𝑤𝑇	 𝑍𝑤𝑇 

Calculate the degree of adaptation, 𝐷𝑇.  

𝐷𝑇	=	𝐹	[1	−	( )	𝑒𝑥𝑝	( )]  (2)  

Calculate other parameters.  

 
Figure 2. The workflow of CCz.  

𝐷𝑅	=	𝐷	𝑅𝑌𝑤𝑇𝑤𝑇	+	1	−	𝐷𝑇	,	𝐷𝐺	=	𝐷	𝐺𝑌𝑤𝑇𝑤𝑇	+	1	−	𝐷𝑇,	𝐷𝐵	=	𝐷	𝐵𝑌𝑤𝑇𝑤𝑇	
+ 

1	−	𝐷𝑇  (3)  

𝐹𝐿𝑇	=	0.2𝑘4(5𝐿𝐴𝑇)	+	0.1(1	−	𝑘4𝑇)2(5𝐿𝐴𝑇)1/3	    

where  𝑘𝑇	   
 1	 0.2 
𝑛	 𝑌	 , 𝑁𝑏𝑏	=	0.725(𝑛)	, 𝑁𝑐𝑏	

=	𝑁𝑏𝑏  
𝑇 

𝑅𝑊𝐶𝑇	 𝐷𝑅𝑅𝑤𝑇 
(𝐺𝑊𝐶𝑇)	=	(𝐷𝐺𝐺𝑤𝑇)  (4)  
𝐵𝑊𝐶𝑇	 𝐷𝐵𝐵𝑤𝑇 

𝐹 
(	𝐿𝑇𝑅𝑊𝐶𝑇)0.42 

𝑅𝑎𝑊𝑇	=	400(	𝐹𝐿𝑅𝑊𝐶𝑇100)0.42+27.13)	+	0.1   (5)  
( 

100 

Similarly, calculate the 𝐺𝑎𝑊𝑇 and 𝐵𝑎𝑊𝑇 by replacing 𝑅𝑊𝐶𝑇 with 
𝐺𝑊𝐶𝑇 and 𝐵𝑊𝐶𝑇, respectively. Now, calculate the achromatic 
response for the white point using (7).   

𝐴𝑊𝑇	=	[2𝑅𝑎𝑊𝑇	+	𝐺𝑎𝑊𝑇	+	0.05𝐵𝑎𝑊𝑇	−	0.305]𝑁𝑏𝑏	  (6) Apply the 

formulation (1)-(6) on the tone mapped image XYZ  

(𝑋𝑇,	𝑌𝑌,	𝑍𝑇) to get 𝐴𝑇 as in (7).  

𝐴𝑇	=	[2𝑅𝑎𝑇	+	𝐺𝑎𝑇	+	0.05𝐵𝑎𝑇	−	0.305]𝑁𝑏𝑏	  (7)  

Finally, the lightness of the tone-mapped image is computed 
using (8).  
 𝐴𝑇	 𝑐.𝑧 

	𝐽𝑇	=	100	(𝐴𝑤𝑇)  (8) here 𝑐 and 𝑧 are the CIECAM16 default 

parameters.  

Color Adaptation  
The HDR images are given in linear domain and can be 

converted into XYZ (𝑋𝐻,	𝑌𝐻,	𝑍𝐻) using the sRGB matrix or with 
the camera characterization model. The colors are adapted from 
HDR image under display surround conditions, i.e., 𝐿𝑎𝑑, 𝑌𝑏𝑑. 
Hence, calculate the post adaption responses (𝑅𝑎𝐻,	𝐺𝑎𝐻,	𝐵𝑎𝐻) of 
the HDR image using (1)-(5), i.e.,   

(−𝐹𝐿𝐻𝑅𝐶𝐻/100)0.42 
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 −400(	 𝐹	 𝐶𝐻/100)0.42+27.13)	+	0.1,	𝑅𝐶𝐻	<	0 
(−	𝐿𝐻𝑅 

𝑅𝑎𝐻	=	{	 (𝐹𝐿𝐻𝑅𝐶𝐻/100)0.42	   (9)  

400((𝐹𝐿𝐻𝑅𝐶𝐻/100)0.42+27.13)	+	0.1,	𝑅𝐶𝐻	≥	0 

The subscript 𝐻 denotes the color are extracted from HDR image 
while the subscript 𝑑 denotes that display surround parameters 
were used. Similarly, 𝐺𝑎𝐻 and 𝐵𝑎𝐻 can be calculated by replacing  
𝑅𝐶𝐻 by 𝐺𝐶𝐻 and 𝐵𝐶𝐻, respectively.  

Calculate Hue Angle and Chroma  
The hue angle can be calculated as follows.  
 12⋅𝐺	 𝐵𝑎𝐻 

𝑎𝐻	=	𝑅𝑎𝐻11 

Finally, the new chroma is calculated using tone-mapped image 
lightness 𝐽𝑇 and HDR image post adaptation equations as follows.  

	𝑒𝑡	 1	 ℎ𝑐⋅𝜋
	   (12)  

	𝑡	   (13)  
𝑅𝑎𝐻 𝐵𝑎𝐻 

 𝐽	 0.5 

𝐶𝑇	   (14)  
  

Now we have got hue ℎ𝑐 from the HDR image, the new Chroma 
𝐶𝑇 while using tone-mapped image lightness 𝐽𝑇. Note that other 
parameters 𝑁𝑐 and 𝑁𝑐𝑏, etc., are calculated using default 
CIECAM16 equations.  

Display Image Transformation  
In the previous steps, the perceptual hue ℎ𝑐 was restored 

from the HDR image and perceptual chroma 𝐶𝑇 was calculated 
employing tone mapped image lightness 𝐽𝑡 and CIECAM16 color 
adaptation equations to the HDR image. The perceptual 

correlates 𝐽𝑡 𝐶𝑇 ℎ𝑐 can be transformed back to XYZ using display 
surround parameters and CIECAM16 inverse transformations. 
Subsequently, the display or the sRGB model may be used to 
calculate the display image. Since	𝐽𝑡 is the original lightness in 
the color corrected image, it ensures the lightness preservation.  

Following the recommendations of CIE Technical Report 
159:2004, Luo et al. [13], the values of 𝐿𝑎 and 𝑌𝑏 were selected. 
The tone mapped images are typically presented in sRGB color 
space hence to present the images here, D65 white point was used 
with 𝐿𝑎𝑇	=	𝐿𝑎𝑑	=	100 and 𝑌𝑏𝑇	=	𝑌𝑏𝑑	=	20, both in cd/m2.  
Moreover, XYZ coordinates for the HDR images were obtained 
using a linear transformation from sRGB to XYZ.  

Results and Discussion  

Visual Comparisons and Discussions  
Figure 3 (a) compares results of four CCMs, including CCz. 

It is evident that Schlick’s and Mantiuk’s (automated versions) 
color corrected images (Li’s TMO) result in significant 
desaturation in regions with high contrast changes as highlighted 
by rectangular areas. Since Artusi’s method applies color 
desaturation step to out of gamut pixels, it is clear that Artusi’s 
color corrected image is relatively low statured.   
Figure 3 (b) displays an image tone-mapped using Li’s TMO and 
color-corrected by four CCMs. It shows that the tone-mapped 
image has high saturation. Artusi’s and Schlick’s CCMs introduce 
lightness shifts and excessively desaturated colors. These 
lightness shifts are particularly noticeable in highlighted areas 
where objects appear too dark. For instance, the orange gourds in 
the original image are lighter compared to those in images 
processed by Artusi’s and Schlick’s methods.  

Mantiuk’s correction notably altered the hue of the orange 
colors. In contrast, CCz successfully preserves both the lightness 
and the hue, producing more vivid and optimal colors than the 
other CCMs.   

Since CCz selectively adapts the colors from HDR images 
under surround conditions, it presents more accurate colors. The 
Figure 4 compares the tone mapped images using multiple TMOs 
and their color corrected versions by four CCMs, including CCz. 
It can be noticed that the text “Waffle House” is flanked by light 
sources, both sides should appear less saturated, while the region 
under the text be more saturated. For true reproduction, this effect 
must be visible in the color corrected images. It can be noticed 
that other CCMs could not produce this differential effect and 
only CCz was able to reproduce the effect. 

 𝑏𝐻	
=	 𝑎𝐻+𝐺𝑎𝐻9	−2𝐵𝑎𝐻 

𝑅 

(10)  

ℎ𝑐	=	tan−1(𝑏𝐻/𝑎𝐻)  (11)  
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Figure 3. (a) The Schlick and Mantiuk methods may suffer extreme desaturation for specific regions. (b): CCz preserved lightness and restored original 
hue. Artusi’s CCM altered the lightness darkening the image and overly desaturated the chroma. Schlick’s CCM also distorted the lightness while Mantiuk’s 
CCM distorted the hue.  

 
 Hui Liang Meylan Reinhard 

  
Figure 4: Comparison of the proposed method with other CCMs employing various TMOs.  

Moreover, the images corrected by Artusi’s method are 
overly desaturated. The color of the red car in Hui’s image is 
selectively desaturated in CCz, while the washed-out colors under 
the text “Waffle House” are a little enhanced to achieve the same 
effect. The image tone mapped with Reinhard’s TMO [14] 
produced highly saturated colors in the entire image. The CCz 

corrected the chroma, and the resultant image has adaptively less 
saturated colors in the car. It can be noted that the tone mapped 
image by Meylan TMO [23], was excessively desaturated with 
washed-out colors in the entire image. The CCz reproduced the 
colors and the differential effect. Similar effects could be observed 
with images processed using Liang TMO.  
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Hue and Lightness differences  
The color differences are generally calculated in the 

CIELAB color space; however, in CIELAB the hue is nonlinear 
in comparison to other color spaces such as CIECAM02 and 
CIECAM16. Therefore, the differences were evaluated using 
CIECAM16 perceptual attributes. In CCz, the goal was to preserve 
the lightness of the tone-mapped image after color correction, 
restore the hue from the HDR image, and estimate a new chroma 
for the tone-mapped images. Consequently, lightness and hue 
differences were calculated in this analysis. Figure 5 shows the 
average lightness differences (ΔJ) and hue differences (𝛥ℎ) for 
104 images from the RIT database [15]. TMOs, such as Reinhard 
[14], Schlick [7], and Khan [16], share the same color 
preservation approach, so only Khan's TMO was included along 
with Hui [5], Liang [4], and Meylan [6] TMOs. Four TMOs and 
four color reproduction techniques were employed. The lightness 
differences of the color-corrected images were calculated against 
tone-mapped image, and hue differences were calculated against 
HDR images. Since hue is defined on a circle, 𝛥ℎ was determined 
as in (15) [9].  

Δℎ	=	min(|ℎ𝑐	−	ℎ𝐻|,	min(|ℎ𝑐	−	ℎ𝐻|	+	2𝜋	+	max(|ℎ𝑐	−	ℎ𝐻|)))	 (15)  

 
Figure 5: Mean  𝛥𝐽 and 𝛥ℎ of 104 color corrected images by employing 
CCMs. The error bars indicate 95% confidence interval.  

where ℎ𝑐 and ℎ𝐻 represent the hue of the color corrected and HDR 
images, respectively.   

As shown in Figure 5, CCz is consistent in preserving 
lightness and restoring hue, thus maintaining the same lightness 
in the color corrected image as in the tone mapped image. The 
minor differences observed are mainly due to the inaccuracy in 
the transformation equations. In contrast, other CCMs introduced 
shifts in lightness and hue, altering the lightness produced by the 
TMOs. These distortions are particularly prominent in Hui, Liang, 
and Meylan TMOs.  

Psychophysical experiment  
The lightness and hue differences can be measured 

objectively; however, since we aimed to reproduce chroma of the 
tone mapped image, the chroma accuracy cannot be measured 
objectively and we need to design a psychophysical experiment. 
A pair comparison-based experiment was conducted to compare 
the performance of CCz with other models based on corrected 
chroma accuracy. In the previous studies, Mantiuk and Artusi used 
scaled versions of the HDR images as reference images in their 
psychophysical experiments. However, scaling HDR images itself 
is tone mapping process which in turn introduces color distortions 
in the reference images. Moreover, selecting images by few 
authors may also turn into biased results. The other scale used by 
authors is the overall preference of the images however it was 
reported that observers may prefer images with more colorfulness 
or saturation than the real senses [17]. Hence, in our 

psychophysical experiment, the naturalness scale was used to 
assess the models.  

Experiment Design and Interface   
Ten HDR images from the RIT database were used for tone 

mapping and color correction, as shown in Figure 6. These images 
included a variety of colors, featuring both night and natural 
scenes. The images were tone mapped using six TMOs including 
Hui, Liang, Khan, Meylan, Reinhard and Schlick TMOs using the 
default parameters. It was noted that Hui TMO produces relatively 
high saturation while Meylan TMO produces relatively low 
saturation. However, Reinhard TMO produces slightly over 
saturated images. Moreover, Liang TMO shifts the hue, Khan and 
Schick TMOs produce relatively high contrast images. 
Furthermore, Reinhard and Schlick TMOs were spatially 
invariant, while other TMOs were spatially variant. Hence, we 
selected a variety of TMOs to test the performance of the models 
Subsequently, each tone-mapped image was processed with four 
CCMs: Schick, Mantiuk, Artusi, and CCz.   

With 10 images, 6 TMOs, and 4 CCMs, there were 240 
processed images and 360 comparison pairs. Each pair was 
repeated randomly to evaluate observer variation, resulting in 720 
assessments per subject.  

The images were displayed on an Apple Pro Display XDR in 
a dark room with a wall reflectance of approximately 4%. The 
peak luminance was set to CIE D65 white point and the CIE 1931 
standard colorimetric observer at 562 cd/m². The calibration 
targets included a native color primaries aligned with the P3 color 
space. To evaluate spatial uniformity, the display was divided into 
3x3 segments, yielding a mean CIELAB color difference (∆𝐸𝑎𝑏) 
of 1.1. The gain-offset-gamma (GOG) display model was used for 
characterization, tested with 24 colors from the ColorChecker 
chart, resulting in an average ∆𝐸𝑎𝑏 of 0.39, ranging from 0.16 to 
1.13. The processed images were then transformed to display 
RGB using this model.  

Subjects were required to pass the Ishihara color vision test 
before participating. Images were displayed in pairs, and the 
experimental interface is shown in Figure 7. Twenty observers 
participated in the experiment, ten each from Chinese and 
Pakistani ethnicities, including 8 females and 12 males, all 
students of Zhejiang University. The mean age was 26, with a 
maximum of 30 and an standard deviation (SD) of 2.8. A total of 
14,400 assessments were collected.  

Intra- and inter-observer variation was analyzed using the 
percentage of wrong decisions (WDs), where a WD occurred if an 
observer selected a different image on a repeated assessment. For 
intra-observer variability, the mean and SD of WDs were 18.72 
and 9.07, respectively. For inter-observer variability, assessments 
were compared across subjects, resulting in mean and SD values 
of 22.23 and 9.6, respectively. These results indicate overall 
consistency within and between subjects, supporting the 
reliability of the findings.  

Performance of CCMs   
The raw scores were converted into standardized Z-scores 

[31], as shown in Figure 8, to compare the performance of four  
CCMs. Schlick’s and Mantiuk’s CCMs consistently scored lower   
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  CanadianFalls Tree Flamingo WaffleHouse   

Figure 6: The images used for the color correction psychophysical 
experiment.  

 

Figure:8 Performance comparison of four CCMs using psychophysical 
results. The error bars indicate 95% confidence interval.  

than Artusi and CCz across all TMOs, indicating less natural color 
reproduction. CCz produced the most natural colors and generally 
outperformed other CCMs for five TMOs, except for Khan TMO 
where Artusi’s method performed better. However, it was noted 
that Khan TMO produced higher contrast [17, 18] and Artusi 
CCM lowered the saturation as well as the lightness therefore the 
images were selected more by the subjects, however CCz 
preserved original lightness but ranked lower due to over contrast 
produced by Khan TMO. Hui TMO required desaturation, while 
Meylan TMO required more saturation for color correction. For 
Reinhard, Khan, and Schlick TMOs the rankings of Artusi and 
CCz were close. Since these three TMOs apply similar color 
preservation strategy during tone mapping therefore the behavior 
of these TMOs was similar in color correction. However, the 
mean scores of all the TMOs indicated that CCz ranked higher 
among all the CCMs for each TMO as depicted in Figure 8.  

Significance Tests   
A significance test was conducted on the mean values of the 

rankings. Figure 9 depicts the results of multiple comparison 
significance test using ANOVA and Tukey's HSD criterion [19, 
20]. This process involves two main steps: ANOVA analysis and 
multiple comparisons. ANOVA provides a p-value to determine if 

there is a significant difference in the means of groups i.e., TMOs. 
A p-value < 0.05 (α = 0.05, 95% confidence interval)   

 
  

Figure 9: Multiple comparison significance tests using ANOVA and 
Tukey's HSD criterion. The CCMs having intervals not intersecting with 
other CCMs are significantly different.  

indicates significance between the TMOs. Afterward, the multiple 
comparisons are performed using a post-hoc method such as the 
Tukey's HSD criterion test, which identifies critical values for 
each pairwise comparison among groups [19, 21]. The critical 
values determine if the difference between the means of the two 
groups (CCMs) is significant. If the calculated difference is 
greater than the critical value, the difference is considered 
significant and the null hypothesis is rejected. In Figure 9, the 
CCMs means are significantly different if their intervals do not 
coincide. The interval for Schlick and Mantiuk CCMs coincide, 
which mean Schlick and Mantiuk color corrected images were not 
significantly different. Moreover, Schlick and Mantiuk CCMs 
intervals do not intersect with the CCz and Artusi CCMs. It is due 
to the fact the images of Artusi and CCz were preferred more when 
compared to the color-corrected images by Schlick and Mantiuk 
CCMs. It implies that Artusi and CCz were significantly different 
than Schlick and Mantiuk CCMs. Moreover, the intervals of none 
of the CCM including Artusi coincide with the interval of the CCz 
therefore CCz is significantly different from other CCMs. It can 
be noted from Figure 8 that CCz ranked higher than other CCMs 
and Figure 9 suggests that CCz was significantly different from 
other CCMs. Hence, it can be concluded that CCz was 
significantly better than other CCMs in terms of natural color 
reproduction.  

Conclusions  
Adaptive chroma correction model CCz was proposed to 

address color distortions in tone mapping. The input to the CCz 
consisted of the tone mapped image and the corresponding 
original HDR image in linear RGB color space without any 
processing. The lightness of the tone mapped image was 
computed using CIECAM16 and tone mapped image surround 
conditions. Afterward, the hue and chroma were computed from 
the HDR image by employing tone mapped image lightness and 
CIECAM16 color adaptation equations of the HDR image under 
display surround conditions.  

Since in CCz, original lightness and hue were restored 
therefore the lightness and hue differences were lowest compared 
to the other CCMs. The visual comparisons and psychophysical 
experiments showed that CCz produced the most natural colors 
among other CCMs and was ranked significantly better.  The 
proposed model can be applied to any TMO whether spatially 
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variant or invariant making it effective post processing technique 
for the TMOs.   
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