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Abstract

This work explores how color is encoded in CLIP (Con-
trastive Language-Image Pre-training) which is currently the
most influential VML (Visual Language model) in Artificial In-
telligence. After performing different experiments on synthetic
datasets created for this task, we conclude that CLIP is able to
attribute correct color labels to colored visual stimulus, but, we
come across two main deficiencies: (a) a clear bias on achro-
matic stimuli that are poorly related to the color concept, thus
white, gray and black are rarely assigned as color labels; and
(b) the tendency to prioritize text over other visual information.
Here we prove it is highly significant in color labelling through
an exhaustive Stroop-effect test. With the aim to find the causes
of these color deficiencies, we analyse the internal representation
at the neuron level. We conclude that CLIP presents an important
amount of neurons selective to text, specially in deepest layers
of the network, and a smaller amount of multi-modal color neu-
rons which could be the key of understanding the concept of color
properly. Our investigation underscores the necessity of refining
color representation mechanisms in neural networks to foster a
more comprehensive comprehension of colors as humans under-
stand them, thereby advancing the efficacy and versatility of mul-
timodal models like CLIP in real-world scenarios.

1. Introduction

In the last decade artificial intelligence (AI) has significantly
progressed in the construction of deep trained models able to
solve vision and language problems with a significant efficiency.
One particular achievement has been the construction of multi-
modal models, namely Visual-Language models (VLMs) with the
ability to associate textual and visual descriptions to seek differ-
ent tasks [5]. The main advantage of these models over traditional
CNNes is their ability to correlate any given text with any given
image thanks to the combination of their text encoder and image
encoder. One VLM worth mentioning is CLIP (Contrastive Lan-
guage—Image Pre-training), which has been the most successful
due its competitive results and generalization capabilities. It was
the first model trained with contrastive learning [3] and was in-
troduced by OpenAl in 2021 [10], who released the model to the
community accelerating its impact both in research and industry
applications.

CLIP is composed by an image encoder which is a Resnet-
like architecture [7], plus a text encoder based on a transformer
[15], finally a cosine similarity between the encoded texts and the
encoded images is computed as a measure of how likely a certain
text represents an input image. One of the main advantages of
CLIP is how it excels at zero-shot learning, allowing it to perform
a task without needing task-specific fine-tuning thanks to its gen-
eralization capability and leveraging its understanding of a wide
range of visual and textual concepts. This is achieved through
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Figure 1. CLIP architecture set for a color naming task. The input image

in the visual encoder is contrasted with several color labels within the input
text. The output is the label that maximizes the visual and text embedding
(Example: Input Text is "The background is { color }”and Input Image is a
green triangle with a pink background).

an initial pre-training of the visual encoder with ImageNet dataset
[4], followed by a subsequent training using 400 million of image-
text pairs that were collected from the internet. These pairs con-
sist of images with their corresponding captions or descriptions.
Thanks to this training, CLIP learns to associate images with their
corresponding text descriptions and distinguishing them from un-
related image-text pairs using a contrastive loss function.

CLIP is specially interesting in color categorization because
its ability to understand text anso improves its color categorization
as shown in [1].This improvement could be due to one of the most
interesting properties that emerge from this training: multi-modal
neurons[6],[13]. Multi-modal neurons are units with a strong ac-
tivation for a certain concept regardless of its representation (text,
realistic image, drawing ...). This is reminiscent of a similar phe-
nomenon in some human neurons, which fire in response to im-
ages, whether they are photos, drawings, or even words of the
same concept [9], making this model specially interesting to study
for its parallelism with the human brain.

As the rest of Deep Neural Networks engines, CLIP presents
a black-box nature and lacks a clear explanation about how
knowledge is embedded in both encoders. Understanding multi-
modal neurons can sheer light on how CLIP works, by analyzing
what stimulus activates them. On this topic, [6] research proves
the concept of multi-modal neurons within CLIP, which respond
to specific concepts across both text and image domains and Mul-
tiViz framework [8] provides a comprehensive approach to ana-
lyzing and understanding the internal mechanics of multi-modal
models like CLIP by identifying the importance of individual in-
puts in the overall prediction process, examining the relationships
and dependencies between multiple inputs and interpreting the
contribution of every features to the output.
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Although previous works have delved into the categorization
and understanding of multi-modal neurons, their main focus is
on the deeper layers of the model, where higher level concepts
are formed, but there is not much research about how low-level
features such as color are learned in this models and if there is
presence of multi-modal neurons in lower layers of CLIP.

The aim of this work is to explore how color is learned in
CLIP. We first explore if color is understood as an object attribute
by asking questions on a basic color/object dataset. Then we ex-
plore the capability of CLIP to recognize and read color with a
Stroop Test dataset. Previous works [6] have stated that CLIP,
like humans present the Stroop effect, we analyse this fact in more
depth, we conclude that CLIP has some problems in recognizing
achromatic colors as visual color attributes and we propose a new
index and a wider set of experiments to identify why these color
problems emerge in CLIP. Finally we analyse the internal repre-
sentation of color at the neuron level. We compute the distribution
of color selective neurons showing a similar distributions as ob-
ject recognition models [11]. We also explore what neurons are
activated in the Stroop task and find color multi-modal neurons
emerging in earlier layers of the neural network.

2. Color predictions on basic images

In this section we aim to perform preliminary experiments
to explore how CLIP associates color labels to a particular im-
age. To test this ability, we have created a dataset of images con-
taining an homogeneous color background and one basic colored
shape. To generate these images, we have used 8 basic shapes
(triangle, square, circle, amongst others) and 11 representative
universal colors which are colors with a common color term in
most developed languages [2] with fixed RGB values. The dataset
contains 500 images for each possible combination with different
rotations, positions and scale of the shapes,totalling 440,000 im-
ages (8 shapes x 11 background colors x 10 object colors x 500
samples). Setting CLIP with the color labels to be associated in
the input text as it is shown in figure 1 we perform the following
experiments:

Experiment 1. In the first experiment we evaluate how CLIP
associates a color term to an image in global, without asking for
any specific part of the input image. The input text is just the
color label. This allow us to determine if CLIP presents any prior
bias towards any specific color, or whether it is inclined to answer
with the most predominant color of the image, no matter if it is
the object or the background. The results are shown in Table 1.
We can see that CLIP is inclined to assign color labels which are
Chromatic. When the background is achromatic and the object
not, it predicts the color of the object (91.08%), and when the
object is achromatic and background not, then it returns the color
of the background (99.74%). However, when both, object and
background are the same, it predicts the color of the background,
63.80% in Achromatic combinations and 78.62% in Chromatic
combinations.
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Input Text: { ,,,,,, } (One color label for the full image)

CLIP prediction Input Object
Background / Object Achromatic Chromatic
Input Achrom. | 63.80% /35.96% | 6.28% /91.08%
Backg. Chrom. 99.74% / 0.19% | 78.62% / 20.42%

Experiment 1. CLIP global color prediction to the Input Text
in top row. Ratios for Background Color / Object color assign-
ment depending of Input Image Type. Input Images divided in
4 groups depending on the chromaticity of Object and Back-
ground. Remaining ratios are incorrect color assignments.

Experiment 2. In asecond experiment, we evaluate if CLIP can
attribute color to a specific part of the image. We ask CLIP to
associate a color label to the image object or to the background
accordingly with the Input Text indicated in Table 2. In this way
we can test if CLIP properly predicts the semantic information
embedded in the input question regarding color attribution. The
results are shown in Table 2. When we ask for the color of the
Object, CLIP predicts the correct color with 73%, 92% and 83%,
but when the object is achromatic the performance decreases to
0.19%, and gives the color of the background. When we ask for
the color of the Background, CLIP predicts the correct color with
70%, 99% and 81%, but when the background is achromatic and
the object chromatic the performance decreases to 5%, and gives
the color of the object. This brings to the same conclusion as in
experiment 1, CLIP does not attribute the color word to achro-
matic parts of the image in presence of a Chromatic color, neither
the object nor the background, but can properly link colors to the
concept of object and background when both stimulus are of the
same mode (Chromatic or Achromatic).

Input Text: The color of the object is {____- }

CLIP prediction Input Object
Background / Object Achromatic Chromatic
Input | Achrom. | 24.88% /73.69% | 4.61% /92.85%

Chrom. | 99.83%/0.15% | 16.50% / 83.41%

Backg.

Input Text: The color of the background is {______ }

CLIP prediction Input Object
Background / Object Achromatic Chromatic
Input | Achrom. | 70.88% /28.74% | 5.46% /93.16%

Chrom. 99.95% /0.02% | 81.34% / 18.61%

Backg.

Experiment 2. CLIP prediction of color attribution to an image
part for two different Input Text on the top row of each table.
Ratios of ( Background Color / Object Color ) assignment de-
pending of Input Image Type. Input Images divided in 4 groups
depending on the chromaticity of Object and Background. Re-
maining ratios are incorrect color assignments.

3. Color predictions on text

Once we have explored CLIP performance in color assign-
ment to basic images, we will explore how color behaves in col-
ored text. To this end, we have set the classical Stroop test [14]
where the task is to predict the color of a word in a colored font,
with the particularity that the word is a color name. With this task
we want to evaluate if CLIP is able to distinguish the semantics
of a question that asks not to read but to perceive the color.
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Experiment 3. Before performing the Stroop test on CLIP, we
evaluated different options of input text for this task to see if CLIP
could understand the question asked properly. In table 3 we show
the distribution of answers for 5 different Input Text sentences.
We can see that no matter the question asked about the color of
the text, the answers present a clear bias towards answering the
color name. Therefore, CLIP seems to be clearly more inclined
to read than to use any other visual information, as already was
proved in a previous work[6]. Considering the results given in
this table we decided to use the top question that gives the lower
ratio in failing in the Stroop test task (59.53%), that is the best in
giving the color of the font (although 2.23% is not significant at
all), which was better understood than the question in the bottom
row which was the one used in a similar experiment performed in

[6].

Backg. Font Written None
Input Text Color Color Color in Input
The word is written in 38.03% | 2.35% | 59.53% | 0.09%
{___} font
The text says {-———- } 13.95% | 0.81% | 85.16% | 0.08%
The color of the 38.63% | 1.69% | 59.63% | 0.05%
background is {____- }
{——} 21.78% | 1.07% | 77.07% | 0.09%
My favorite word, 36.98% | 1.98% | 61.01% | 0.04%
written in the color {____}

Experiment 3. Evaluation of questions. Ratio of color label
answers for each image with a different color for background,
font or word.

In what follows we show the results of two different Stroop
experiments on CLIP. To assess the performance on this task we
have generated a Stroop dataset with 11 basic color names written
in 10 different basic colors (excluding the color name) and for 9
different colored backgrounds (excluding the color name and the
font color) with 500 samples of each (varying the type of font, size
and position) that totals on 495,000 images. The first experiment,
which is similar to the original test where colored color terms
appear on a white background, having to chose mainly between
the written color, or the color of the font. In a second experiment,
we use a larger set of images where the background is colored.
This experiment adds a new color distractor to the task.

Experiment 4. Stroop Test on white background. The results
of this experiment are summarized in Table 4 . In the first two
columns we show the percentage of correct answers, this is CLIP
returning the color of the FONT of the input image. We can see
the accuracy for the task is very low, only for 16.7% of the images
we get the correct color answer. In the third and fourth columns
we give the ratio of incorrect answer, this is, CLIP assigning the
color written in the text in 81.1% over all images or answering
a color in neither stimulus 2.17%. These ratios are equally dis-
tributed for all colors except for grey, where we get a small minor
rate. In conclusion, from these results we can state that CLIP
presents a strong Stroop effect, making it unable to avoid reading
instead of focusing on other stimulus.
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Color of the Font Written Color None
FONT 0.99 Black 8.23 0.14
FONT 0.97 Grey 5.16 0.6
FONT 1.37 Red 7.97 0.29
FONT 2.63 Green 8.66 0.17
FONT 2.4 Blue 8.5 0.21
1.61 Yellow 8.05 0.21
FONT 0.95 Brown 8.51 Q.18
FONT 1.56 Orange 8.65 0.12
FONT 1.73 Pink 8.62 0.17
FONT 2.49 Purple 8.77 0.07
TOTAL | 16.72% 81.11% | 2.17%

Experiment 4. Stroop Test with White Background. (Column
2): % of Correct Answers. (Columns 4,5): % of Incorrect an-
swers.

Experiment 5. Stroop Test on colored background The re-
sults of this experiment are shown in Table 5. This experiment
show worst results than the previous one due the presence of a
second distractor (Background). In the first two columns we show
the percentage of correct answers in returning the color of the
FONT of the input image. We can see that the error for this task
has been notably increased with respect to the white background,
only for 2.35% of the images we get the correct color answer. In
the fourth and sixth columns we give the distribution of the in-
correct answers. In a 59.5% of the cases, CLIP returns the color
name, and in 38% assigns the color of the background. It is worth
mentioning that the distraction effect of the background is quite
low on Achromatic colors with significant lower errors compared
with the Chromatic colors, this results go in line with the results
observed in the first experiments where Achromatic colors were
not taken into consideration in presence of other stimuli. This
second experiment confirms the bias towards written stimuli of
CLIP.

Color of the Font Written Color Background Color | None
0.00 White 1.73 0.01 0.00
FONT 0.00 Black 5.74 0.13 0.00
FONT 0.01 Grey 3.05 1.24 0.05
FONT 0.12 Red 4.71 3.50 0.01
FONT 0.40 Green 5.67 3.07 0.01
FONT 0.26 Blue 4.91 3.42 0.00
0.27 Yellow 6.13 7.74 0.01
FONT 0.00 Brown 6.71 3.06 0.00
FONT 0.26 Orange 6.65 4.80 0.00
FONT 0.21 Pink 6.26 3.14 0.00
FONT 0.83 Purple 7.96 7.92 0.00
TOTAL | 2.35% 59.53% 38.03% | 0.09%

Experiment 5. Stroop test with Colored Background. (Column
2): % of Correct Answers. (Columns 4,6,7): % of Incorrect
answers.

103



Color Selectivity of CLIP Encoder
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Figure 2. Distribution of Color Selective Neurons in CLIP Visual Encoder
Layers.

4. Color in CLIP Visual Encoder

Color Selectivity

Once we concluded several deficiencies in color label assign-
ment, in this section we explore possible causes for these draw-
backs. Our exploration is done at the neuron level. Firstly, we
analyse the generic Color Selectivity Index of individual neuron
units as it was definded in [11], where the Color Selectivity index
is calculated by finding the 100 top scoring patches over a large
dataset (Imagenet), and calculating the difference in activation by
those same patches in gray scale, with a high color selectivity
meaning that color is important to activate a neuron, and a low
selectivity index meaning that only the shape was important to ac-
tivate a neuron. Secondly, we propose an in-depth analysis of the
activation of the CLIP individual neurons provoked by the Stroop
dataset in CLIP by defining a Color-Label Selectivity Index, and
classifying the neurons over the network based on the stimulus of
their activation.

In figure 2 we show the distribution of color selectivity in-
dexes for the neurons of each block of convolutional layers of
the CLIP Visual Encoder. Overall, we can see that the ratio of
color selectivity is a bit lower than the one usually found in object
recognition models (e.g. see fig.4 (a) in [11]). This could be due to
the subsequent training process that CLIP goes through after the
initial training on Imagenet. The training process on a large Inter-
net dataset to acquire text understanding skills could have shifted
color selective neurons to pattern selective neurons necessary to
accommodate reading abilities. In figure 3, we show the hue dis-
tribution of the color selective neuron features we have found in
CLIP. Despite the second training on a larger dataset, CLIP’s hue
selectivity maintains a high correlation with the ImageNet hue
distribution (Pearson’s correlation coefficient of 0.965), which
proves the posterior training has not reduced the overall distri-
bution of the selectivity properties.
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Figure 3. Hue Selectivity Distribution in the Visual Encoder vs. Imagenet
Distribution (Pearson’s correlation coefficient R=0.965).

Activation Analysis

In pursuing the causes of the color deficiencies found in the
previous experiments, we propose a new Color-Label Selectivity
Index inspired on the Class selectivity Index proposed by Rafegas
et-al in [12]. This new index, f., measures the relative frequency
of each color label ¢ for a given neuron, n;;, and it is estimated
as:

fo (nit) = L) wiit )

=N
Y wiir

where N, refers to the number of images, among the N cropped
top scoring images activating this neuron that contains the spe-
cific color label ¢. Considering n'! is the i-th neuron of layer L,
we denote its activation value as wy;;, when the input image is
s. By computing this index over all the activation’s provoked by
the Stroop dataset we can classify all the neurons in 5 different
categories with the following criteria:

Color: Neuron with high Color-Label Selectivity Index for a spe-
cific color label, independently if the label is attributed to
the background or to the font, it activates for a specific color
label. We can differentiate between Chromatic and Achro-
matic color labels. Example in Figure 4.(a).

Any Word: Neuron with a high activation for any word. It had a
high activation for the Stroop Dataset as well as for images
of Imagenet containing text, which means it activates for any
kind of written word independently of its color or meaning.
Example in Figure 4.(b).

Color Word: Neuron with high Color-Label Selectivity index for
a specific color word, i.e. it activates only for one specific
color name independently of the color of the font. Example
in Figure 4.(c).

Color Multimodal: Neuron with high Color-Label Selectivity
index for a specific color word, for the same color label of
font, and for the same color label of background, i.e. it ac-
tivates for one specific color in all its modalities, it captures
the concept of the color in full. Example in Figure 4.(d).

Not activated: Neuron with low activation to images in Stroop
dataset, which means that those neurons are not selective
to color in any of its modalities. It maximum activation in
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Figure 4.  Example of 4 types of Neurons. Left side: Neuron feature
(weighted averaged of the first 100 top-scoring cropped images). Right side:

9 top-scoring cropped images from the Stroop dataset.
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Figure 5. Distribution of Neuron Types per layers in CLIP.

Stroop dataset does not reach 50% of the maximum activa-
tion that this neuron achieves with the ImageNet dataset.

In figure 5 we show the distribution of the different type of neu-
rons, according to the previous description, that we found in CLIP
layers. We can observe that in lower layers we have a big amount
of achromatic color neurons whose activation underlies the repre-
sentation of all the basic shapes and high frequencies of the text
images. A second important group of color chromatic neurons
which represent the basic color information. As we go deeper
in the network the number of Color Word neurons are increas-
ing, since more complex letters and words are being hierarchi-
cally built. One interesting finding is we have Color Multi-modal
neurons in shallower layers, which is a novelty, since in previous
works this kind of neurons has always been found in deep layers
and encoding high-level concepts. In this case, since our multi-
modal neurons represent color which is a low-level property they
are found earlier.

Conclusions

In this work we explored how one of the most influential
Visual-Language models in Al deals with color labelling tasks.
We have performed a set of basic experiments to report how CLIP
behaves in front of specific color tasks and we found out some
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that we summarized in next lines:

* Achromatic stimuli are not related to the color concept.
It presents important errors when asked to assign black,
white or grey labels.

* Preference to label the predominant color. When asked
for a global assignment, it labels the larger colored area, ex-
cept when it is achromatic.

» Ability to attribute the color label to the asked image
part. It properly attributes the color label to object or back-
ground accordingly with the input text. Again with the ex-
ception of achromatic colors. If one of the parts is achro-
matic, the assigned label is always the chromatic one, inde-
pendently of the part asked in the input question.

Stroop effect with words written in white background. It

leans towards reading (80%) rather than assigning the color

of the font (16%).

* Chomatic Backgrounds distract the reading preference
in the Stroop test. When distracted by a Chromatic back-
ground, CLIP still prioritizes reading (59%), but with a shift
towards answering the color of the background (38%), and
completely ignoring the main objective, that is giving the
color of the font (2%).

Looking for an explanation to this behaviour is a hard task due

mm color (achromatic) the black-box nature of these models. We made some step to-
40 Emm Color (Chromatic)

ward this end. We analysed the internal representation at the neu-
ron unit level. We developed a new Selectivity Index to identify
neurons presenting a preference for specific types of labels. We
have identified a set of Color Multi-Modal neurons, that combine
its selectivity to written color words and the corresponding color
stimulus. Interestingly, these neurons are found in shallow layers
of the network, that could be due to the intrinsic nature of color
as a generic attribute of any concept.

From the previous conclusions we hypothesize that the lack
of understanding of achromatic stimuli as colors, could be due
to their prevalence as image backgrounds in many datasets. A
possible solution for a more robust and human-like minded model
could be training the models more progressively, ensuring they
learn from basic common-sense concepts to more complex ones,
in a similar way as children learn about the world.
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