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Abstract

Large efforts have been made to perform illuminant esti-
mation, resulting in the development of various statistical- and
learning-based methods. However, there have been challenges
for some types of images, such as a single color, referred to as
pure color images, which is the focus of the present research..
In this study, the neural network approach is used. It was
found the Kolmogorov-Arnold Networks (KAN) model, a novel
approach that diverges from traditional Multi-Layer Perceptron
(MLP) architectures gave the accurate predictions. Our method,
”Large Size Colour Constancy” (LSCC), characterized by its
unique neural network structure, achieves high accuracy in il-
luminant estimation with significantly fewer parameters and en-
hanced interpretability. Additionally, three new pure color im-
age datasets—"ZJU Color Fabric”, ”ZJU 0.8 Real Scene”, and
”ZJU 1.0 Real Scene” were produced—covering a wide range of
conditions, including indoor and outdoor environments, as well
as natural and artificial light sources. The results showed LSCC
method to outperform existing methods across not only the pure
colour datasets but also the traditional datasets, including classi-
cal normal images. It should offers practical deployment potential
due to its efficiency and reduced computational requirements.

Introduction

In the field of computational color constancy, the focus is
to adjust the colors in an image to appear as they would under a
standard illuminant, effectively removing any color cast caused
by varying lighting conditions. This process is analogous to the
auto white balance function in modern digital cameras, including
those in smartphones, and is a critical step in the image signal pro-
cessing pipeline to ensure high-quality images. Various methods
have been developed to estimate the illuminant in captured im-
ages, ranging from statistical approaches to learning-based tech-
niques.

Traditional statistical methods often rely on assumptions
about the statistical properties of colors in an image, such as
those employed in the grey world [1], white patch [2], shades of
grey [3], and PCA-based [4] methods. Although these methods
are computationally efficient, their underlying assumptions fre-
quently do not hold in real-world scenarios. Consequently, these
methods often result in inaccurate illuminant estimation and poor
image quality, particularly in scenes dominated by a single color,
referred to as pure color images.

Recent advancements in neural networks have enhanced
learning-based methods for color constancy. The Pure Color Con-
stancy (PCC) method [5], for example, improves illuminant es-
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Figure 1. Examples of real-world pure color scenes captured using a smart-
phone. (A) is an image taken with additional reference colors present in the
scene, while (B) is a pure color image without any other reference colors. (B)
was taken by shifting the smartphone slightly to the right after capturing (A),
ensuring that both images were taken under the same lighting conditions.

timation accuracy for pure color images through representative
color inputs and a lightweight network design. However, PCC,
like other methods based on Multi-Layer Perceptrons (MLPs),
CNNs, RNNs, and Transformers, faces inherent limitations due
to its underlying architecture despite increasing structural com-
plexity.

To overcome these limitations, the present work proposes
a novel method—Large Size Colour Constancy (LSCC), intro-
ducing Kolmogorov-Arnold Networks (KAN) to automatic white
balance for the first time. KAN’s novel architecture diverges
from traditional MLP-based methods, significantly reducing pa-
rameters while enhancing prediction accuracy and interpretabil-
ity. LSCC outperforms existing methods in various real-world
conditions, including pure color and complex scenes, setting a
new benchmark in computational color constancy.

Pure or large size, color images, dominated by a single color,
lack the semantic information needed for accurate illuminant esti-
mation. These images are common, especially with advancements
in smartphone macro and telephoto photography, often leading to
incorrect white balance (Figure 1). Despite their prevalence, ex-
isting methods have not been extensively tested on pure color im-
ages due to their unique characteristics and the lack of dedicated
datasets. This gap has limited research in this area.

With the above in mind, three novel pure color im-
age datasets: “ZJU Color Fabric” (ZJU-CF), “ZJU 0.8
Real Scene”(ZJU-0.8RS), and “ZJU 1.0 Real Scene” (ZJU-
1.0RS)dataset, captured using mirrorless interchangeable lens
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Figure 2.  (A) an example of two different fabric textures included in the
“ZJU Color Fabric” dataset. Top row is JPG images of gray card, the second
and the third row is JPG images and RAW images of one of the textured
fabrics, the bottom two row is another one. Left column, images taken under
2800K color temperature light source, 6500K and 10000K to the right. (B)
an example of an image from each of the two datasets. Top row are images
without color checker; bottom row are images with color checker; left column
are RAW images; right column are JPG images. The top part is an example
image from the ZJU-0.8RS dataset and the bottom part is an example image
from the ZJU-1.0RS dataset.

camera (MILC) were produced. They include various examples
of pure color scenes, covering a variety of conditions containing
indoor and outdoor environments, as well as natural and artificial
light sources, offering a comprehensive resource for evaluating
color constancy methods under these challenging conditions.

“ZJU Pure Color” Image Dataset

Existing Datasets for lllumination Estimation

Several image datasets are widely utilized in various re-
search areas to study illumination estimation, including the Col-
orChecker [6], NUS-8 [4], Cube+ [8], etc. and the first dataset of
pure color scenes, “PolyU Pure Color” dataset [5]. Table 1 sum-
marises the information of these datasets, including dataset size
and color temperature distribution information, etc. It should be
noted that the ColorChecker dataset was the latest Recommended
Color Checker (CC2018) dataset with improved ground-truth il-
luminants [9].

The PolyU Pure Color image dataset specifically includes
pure color images from both outdoor scenes (e.g., green grass,
blue sky, and flowers) and indoor scenes (e.g., illuminated fabrics
and walls). Despite its smaller size compared to other datasets,
it provides valuable data for research on pure color images. It is
of great help to industrial research. However, there is still lack of
pure color images captured using advanced cameras.

“ZJU Color Fabric” Dataset

The “ZJU Color Fabric” dataset (ZJU-CF) was captured in
LED Cube, which can generate light sources based on CCT, Duv
or spectrum, controlled by computer software. The dataset con-
tains images of 144 pieces of fabric include different color and
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different texture, under 16 color temperature light sources (e.g.,
2800K, 3000, 3500K, 4000K, 4500K, 5000K, 5500K, 6000K,
6500K, 7000K, 7500K, 8000K, 8500K, 9000K, 9500K, 10000K).
All images were taken with fixed settings, and other information is
shown in table 1. The images were processed by dcraw, with man-
ual white balance, then uniform correction is performed based on
the gray card taken in advance. The gray card images are shown
at the top of Figure 2(A).

Before capturing the images, all 16 light sources were set up
and stored in the LED Cube control device. All light sources are
measured by Jeti to ensure that the Duv value is less than 0.003.
During the image capture process, the camera was set to automat-
ically shoot every 3 seconds and the control device of the LED
Cube was clicked to switch the light source during the shooting
interval, which effectively avoided the camera shake caused by
pressing the shutter.

After processing, the images were saved in NPY format for
Python reading. The middle two rows and the bottom two rows of
Figure 2(A) show images of two different fabrics taken under light
sources with color temperatures of 2800K, 6500K, and 10000K.
Then an image is divided into a 3x3 grid of nine segments, which
serves as a data augmentation.

“ZJU 0.8/1.0 Real Scene” Dataset

The “ZJU 0.8 Real Scene” dataset (ZJU-0.8RS) and “ZJU
1.0 Real Scene” dataset (ZJU-1.0RS) were both extensions of the
pure color images dataset, including outdoor scenes and indoor
scenes. ZJU-0.8RS under 39 different light source scenes, ZJU-
1.0RS contain 49 outdoor and 40 indoor images and other infor-
mation about the two datasets is summarized in Table 1.

Before capturing each image of ZJU-0.8RS, a ColorChecker
facing the light source will be captured first, allowing the col-
lection of the ground-truth illuminant in the scene. A CL500A
spectroradiometer was also used to collect the ground-truth illu-
minant in the scene, contain the XYZ, color temperature, Duv,
spectrum and other information of light source. Then the image
in this scene should be collected as soon as possible to avoid inac-
curate ground-truth illuminant caused by changes in outdoor light
sources.

When capturing each image in ZJU-1.0 RS dataset, an X-
Rite ColorChecker placed in the scene was captured, the ground-
truth illuminant was then calculated using the rgb values of the
“white” patch in the ColorChecker target, and the normalized rgb
values were saved in NPY file in a folder different from the image,
with the same file name as the image, so that the images can be
processed directly without masking the color checkers. Both the
images with and without the ColorChecker were also saved in a
JPG format, which was processed by the camera automatically for
visualization and all processes above are also applied to the ZJU-
0.8RS dataset. Figure 2(b) shows an image from each of the two
datasets, including the RAW images with and without the color
checker and the JPG images for visualization.
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Table1: Summary of the datasets used in the study, and M means MILC, D means DSLR

No. of No. after . CCT Range / Mode /
Datasets original augmentation Device Used Type The proportion of the majority
Poly-U 102 4529 Smartphone (Huawei P50 Pro) Pure color 3000K-8000K / 7000K / 37.25%
ZJU-CF 2304 23231 M (Nikon Z6) Pure color 2800K - 10000K / (Artificial)
ZJU 0.8RS 214 5469 M (Olympus E-M1 mark ii) Pure color 2500K-6500K / 5500K / 48.22%
ZJU 1.0RS 90 5875 M (Sony a7r4) Pure color 2000K-7000K / 3000 / 27.78%
CC2018 568 - D (Canon 1D and 5D) Classical 3500K-8500K / 5000K / 35.56%
NUS-8 210*8 - D (8 cameras) Classical 3000K-8500K / 5000K / 37.11%
Cube+ 1707 - D (Canon EOS 550D) Classical 2500K-8500K / 4500K / 43.29%

Proposed “Large Size Colour Constancy”
Method

Related Work

To address the white balance issue in pure color scenes, Yue
et al. first proposed the PCC method [5], which combines four
color inputs with a neural network, achieving notable results. In-
spired by feature-based methods, particularly Cheng et al.’s ap-
proach [4], the PCC method uses four color inputs: (1) normal-
ized max chromaticities: the chromaticities of the maximal RGB
values in each channel; (2) normalized mean chromaticities: the
chromaticities of the mean RGB values in each channel; (3) nor-
malized brightest chromaticities: the chromaticities of the pixel
with the largest R + G + B value; (4) normalized darkest chro-
maticities: the chromaticities of the pixel with the smallest R +
G + B value. These inputs have been shown in the paper [5] to
effectively represent scene light sources. These four sets of chro-
maticities serve as inputs for a lightweight multilayer perceptron
(MLP) neural network inspired by [7], with the structure shown
in Figure 3(A).

MLP are fundamental components in contemporary deep
learning architectures, yet they exhibit several inherent weak-
nesses that limit their effectiveness. MLP require a substantial
number of parameters to accurately represent complex functions,
resulting in significant computational costs and memory demands.
Additionally, MLP employ global activation functions, leading to
widespread propagation of local changes across the entire net-
work. This characteristic often disrupts previously learned infor-
mation, making MLP susceptible to catastrophic forgetting dur-
ing continuous learning tasks. Furthermore, MLP are less ef-
ficient than splines in optimizing low-dimensional functions, as
they struggle to precisely adjust univariate functions. Although
MLP are capable of learning features, they are inefficient in ap-
proximating univariate functions, thus constraining their overall
expressive power. From CNN, RNN, Transformer to the recent
large models, although the structure is becoming more and more
complex, they are all constantly modified on the neural network
composed of MLP. Therefore, they also have same problems with
MLP.

Not long ago, Liu et al. [11] proposed the Kolmogorov-
Arnold Networks (KANs) model, address these weaknesses
through innovative design principles that significantly enhance
their flexibility and adaptability. Unlike MLPs, KANs utilize
learnable activation functions on the edges (weights) rather than
fixed activation functions on the nodes (neurons). This replace-
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ment of linear weight matrices with learnable univariate func-
tions, parametrized as splines, allows KANs to adapt more ef-
fectively to complex tasks. The local nature of spline basis func-
tions mitigates the issue of catastrophic forgetting, as any given
sample only influences a limited set of spline coefficients, pre-
serving the integrity of distant coefficients. This local adaptabil-
ity ensures that learning new tasks does not degrade performance
on previously learned tasks. Moreover, KANs typically require
smaller network sizes than MLPs, which conserves computational
resources and facilitates better universality and interpretability.
By integrating the feature learning capabilities of MLPs with the
precise univariate function optimization of splines, KANs effec-
tively learn and optimize complex features with high accuracy,
significantly enhancing their overall expressive power.

“Large Size Colour Constancy” Method

The proposed LSCC method includes a novel architecture to
process chromaticity inputs for image analysis, offering signifi-
cant improvements in performance and efficiency over traditional
MLP-based learning methods, inspired by the above new KAN
model. As illustrated in Figure 3(B), the structure comprises
a series of fully connected layers, each utilizing learnable acti-
vation functions parameterized as splines rather than fixed non-
linearities at the nodes.

The method begins with an input layer with 8 nodes, rep-
resenting the four chromaticity inputs extracted from the image.
Since the four chromaticity inputs proposed by [5](e.g. normal-
ized maximal, mean, brightest, and darkest pixel values) were
proved that they are likely to vary under different illuminants,
which are considered as four important inputs for estimating the
illuminant, our method was still designed to use these four color
inputs.

These inputs are then processed through multiple hidden lay-
ers with 9 nodes, where the learnable activation functions facili-
tate a more granular and locally adaptive transformation of the
data. This configuration ensures that the network can capture
complex patterns and relationships within the chromaticity space
more effectively.

The output layer in R? generates a set of estimated chro-
maticities (7, §), and the final chromaticity (13) is computed as
1 — 7 —§, just like PCC. This approach not only provides a more
accurate estimation of the chromaticity values but also ensures
that the sum of the chromaticities adheres to the inherent con-
straints of the color space.
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(A) is the overview of the PCC method, and (B) is the overview of the LSCC method. Both two method, with the four color inputs, in terms of the

normalized chromaticities, as the inputs for the neural network, and predicts a set of 2D (#, $) chromaticities as the estimated illuminant L. (C) shows a trained

LSCC model.

Experiment and Results

Settings

The network was trained in PyTorch [12], and L-BFGS. Both
was adopted as the optimization algorithm, with an overall penalty
strength of 103 and an entropy penalty strength of 10. The batch
size was set to 1, and the model with the best performance through
a total of 2000 (for all the datasets), greatly reduced compared to
MLP-based learning method, while ensuring the high accuracy.
The order of the B-spline function k is set to 3, the number of
grid intervals is also 3, and the angular error was adopted as the
residual function and loss function. The standard angular error
between the estimated and ground-truth illuminants, as calculated

using Eq. 1.
L-L )
IZI- 1Ll

where L is the estimated illuminant and L is the ground-truth illu-
minant.

(€]

180
Angular Error = o arccos (

Data Augmentation and Pre-Processing

Although the proposed dataset contains relatively fewer im-
ages compared to other existing datasets such as NUS and Cube+,
the AWB-Aug method [5] provides an effective means of data
augmentation. This approach involves multiplying the original
image Iy by a 3 x 3 diagonal matrix M, with diagonal elements

defined as [%, g—i, Ib’—z} , where r,, g4, and b, denote the augmented
RGB values, and r,, g,, and b, correspond to the original values.
Initially, the augmentation process was carried out by randomly
assigning RGB values within the range of 0.6 to 1.4, potentially
resulting in illuminants that do not exist in reality. To address this,
a subsequent augmentation step was performed, where RGB val-
ues were randomly assigned, ensuring that the chromaticity dis-
tance to the selected illuminants remained below 0.01.

All datasets used were processed into 16-bit PNG images by
dcraw with the longest edge resized to 256 pixels, except for the
PolyU dataset, which is 128 x 128 pixels and 8-bit format.
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Network Design

Unlike MLP-based learning models, KAN models do not
require a large number of parameters. However, an appropriate
number of hidden layer nodes can significantly reduce training
time and improve accuracy. Mathematically, the number of hid-
den layer nodes is generally less than 2n+1 [11], where n is the
number of input nodes. In order to find the best number of hidden
layer nodes, the ZJU-1.0RS dataset was employed as an example
and test the number of hidden layer nodes from 4 to 19. Each
number of nodes was tested 10 rounds. In each round of testing,
90% of the data was randomly selected as the training set, and the
remaining 10% was the test set (note: 0.9/0.1 was proven to be
the most robust split ratio in this scale of dataset). The test angu-
lar error and training time of each round were recorded, and the
average value of 10 rounds was taken as the result of changing the
number of hidden layer nodes, summarized in Figure 4.

It showed that the performance of LSCC does not increase
with more parameters and take longer to train, like MLP-based

s Performance and Training Time for Different Numbers of Hidden Layer Nodes
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Figure 5. Examples of the images in the “ZJU-0.8RS” and “ZJU-1.0RS” dataset. Column (A) shows the raw image, columns (B) to (E) show the images that
were white balanced result estimated by the existing methods, follow by gray world (GW), white patch (WP), shade of grey (SoG) and PCC, column (F) shows
the image that was white balanced using the estimated illuminant derived using the proposed LSCC method, and column (G) shows the image that was white
balanced using the ground-truth illuminant. The angular error between the estimated and ground-truth illuminants is shown on the right top of each image.

learning method. It is interesting that when the number of hid-
den layer nodes reaches 10, the model performance deteriorates,
and when the number reaches 15 and 16, the training time be-
comes abnormally long and then suddenly decreased. This in-
dicates that an inappropriate number of nodes will lead to poor
model performance for the KAN model, because it will also ap-
ply pruning operations during the training process, and redundant
nodes will only reduce node utilization efficiency and increase
time consumption.

Figure 3(c) shows the trained network structure. It can be
seen that many lines have faded or even disappeared. These faded
or disappeared lines are the result of pruning, i.e. the smaller
corresponding weight, the more serious line fades. This operation
greatly improves the utilization rate of nodes and also reduces
the size of the model. Zooming in on a portion of the trained
activation functions, It can be seen that in addition to the linear
relationship, each activation function is different, include some
complex activation functions. This is why the KAN model can
make accurate predictions with very few parameters. From the
network structure, the weight of each chromaticity input and its
relationship with the output can be further analysed, making the
model more interpretable than MLP.

It was also found the multi-layer KAN model‘s performance
did not improve much and the complexity and training increased
exponentially. So, the proposed network illustrated in Figure 3(b)
can achieve the best performance.

Results

The performance of the proposed method on pure color im-
ages in the ZJU-combined dataset (extracted from “ZJU-CF”,
“ZJU-0.8RS”, and “ZJU-1.0RS”) was compared with statistical
and state-of-the-art learning-based methods. Table 2 summarizes
the performance in terms of angular error, including mean, me-
dian (Med), trimean (Tri), best 25%, and worst 25%, with ex-
ample images shown in Figure 5. To verify the universality, the
PolyU dataset was used for training and the results were compared
with those in [5] and Table 3 summarises the results of the meth-
ods’ performance.. Additionally, cross-dataset predictions were
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performed where the model trained on the ZJU-combined dataset
was used to predict illuminants for the individual datasets (ZJU-
CF, ZJU-0.8RS, and ZJU-1.0RS) as well as the PolyU dataset.
Table 4 summarises the results of the methods’ performance.

In addition to pure color images, it is also important to eval-
uate the proposed KAN method using traditional normal images.
For this purpose, the NUS-8 dataset for training and the Cube+
dataset for testing was applied. Table 5 summarizes the angu-
lar errors derived using various methods on these two datasets.
For the NUS-8 dataset, the proposed KAN model was trained and
evaluated on the images captured by Canon1DsMKklIl.

From Table 2 and 3, it can be observed that the statistical-

Table2: Summary of the performance of various statistical and
learning-Based Methods, on the ZJU-combined datasets.

Method Mean Med. Tri. Best25% Worst25%
GW 1392 12.58 13.19 4.5 24.77
WP 12771 1195 1220 6.03 20.74
SoG(p=6) 11.11 970 10.17 3.42 21.24
C5[10] 2.88 231 239 0.69 5.73
PCC 346 1.68 1.95 0.54 8.99
LSCC 240 156 1.77 0.44 5.53

Table3: Summary of the performance of various statistical-
and learning-Based Methods on the PolyU dataset

Method Mean Med. Tri. Best25% Worst25%
GW 10.37 8.14 8.67 2.60 21.40
WP 9.64 8.78 8.93 2.78 17.25
SoG(p =3) 9.66 8.03 8.13 2.38 19.92
FFCC 3.56 1.97 3.05 0.58 9.39
C5 3.22 2.06 2.57 0.65 7.29
PCC 3.23 1.40 1.86 0.48 8.76
LSCC 2.52 1.36 1.38 0.38 7.67
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Table4: Summary of the performance comparison between PCC and LSCC under cross-dataset prediction scenarios. The training
dataset is "ZJU-combined”; values in parentheses indicate performance when using the prediction dataset on itself.

PCC LSCC

Methods ZJUO0.8RS ZJU1.0RS ZJU CF Poly-U ZJUO.SRS ZJU1.0RS ZJU CF Poly-U
Mean 5.21 (2.50) 5.96 (3.11) 470 (3.01) 6.36(3.23) 2.70(2.46) 2.42 (1.93) 2.39(1.52) 3.03(2.52)
Med. 4.37 (1.81) 4.94 (2.59) 3.28 (2.11)  4.99 (1.40) 1.89 (1.75) 1.61 (1.87) 1.56 (0.90)  2.36 (1.36)
Tri. 4.77 (2.01) 5.11 (2.64) 3.80(2.30) 5.36(1.86) 2.19(2.01) 1.73 (1.66) 1.72 (1.06)  2.66 (1.38)
Best25% 0.99 (0.54) 1.20 (0.92) 1.72 (0.51) 1.50 (0.48)  0.85(0.75) 0.66 (0.53) 0.80 (0.45)  0.98 (0.38)
Worst25%  8.39 (5.21) 9.10 (7.63) 9.17 (6.67) 9.45(8.76)  6.91 (6.86) 6.16 (6.17) 6.12(5.36) 7.34(7.67)

Table5: Performance Comparison of Various Methods on References

Cube+ Dataset with Models Trained on NUS-8 Dataset

Method Mean Med. Tri. Best25% Worst25%
GW 352 255 282 0.60 7.98
WP 9.69 748 8.56 1.72 20.49
SoG 322 212 244 0.43 7.77
FFCC 2.69 1.89 2.08 0.46 6.31
C5(m=1) 260 186 2.10 0.55 5.89
PCC 2.64 208 223 0.81 5.41
LSCC 235 177 194 0.54 5.16

based methods generally resulted in much poorer performance.
The various state-of-the-art learning-based methods had much
better performance, with the LSCC method having the smallest
angular errors on all the dataset. PCC performs well even with
a small network architecture, mainly because the color inputs
can effectively characterize the scene’s light source, allowing the
model to make better predictions.

Table 4 results clearly showed that the KAN universal model
outperformed the PCC universal model by a factor over 2, and the
performance of the universal model comparing with the individ-
ual model is worse by 88% and 28% for PCC and KAN models
respectively, indicating that KAN universal model’s performance
could be quite satisfactory already.

Both Tables 4 and 5 demonstrate that LSCC exhibits su-
perior performance in cross-dataset predictions, particularly for
pure color images. Furthermore, LSCC slightly outperforms other
learning-based methods in cross-dataset predictions for classical
image datasets, with significantly fewer parameters—over four
times fewer than those of PCC and approximately 820 times fewer
than FFCC, highlighting its efficiency and effectiveness.

Conclusion

Iluminant estimation is crucial for imaging systems, yet
pure color images have been understudied. In this study, three
new pure color datasets—ZJU Color Fabric, ZJU 0.8 Real Scene,
and ZJU 1.0 Real Scene—were developed, covering diverse con-
ditions. Study also introduces the KAN neural networks, which
diverges from MLP architectures and achieves high accuracy with
fewer parameters and better interpretability. It estimates the chro-
maticities of the illuminant based on four important color inputs
of an image, proposed by [5], including the chromaticities of the
maximal, mean, brightest, and darkest pixels in an image.
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