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Abstract
In modern image signal processors (ISPs), many modules

have adopted deep neural networks (DNNs). This study explores
whether a single DNN can effectively replace both the auto white
balance (AWB) and denoising modules, or if they should be pro-
cessed separately. Our experiment results suggest that performing
AWB and denoising individually can produce better performance
than an end-to-end approach. Moreover, processing denoising
before AWB leads to a significant improvement, with an increase
of nearly 6 dB in PSNR and 30% reduction in mean angular er-
ror (MAE). These findings suggest that careful consideration of
the processing order in ISP pipelines can lead to substantial en-
hancements in image quality.

Introduction
Image signal processors (ISPs) are crucial in modern digital

imaging systems, converting raw sensor data into high-quality im-
ages. With the development of deep learning, many ISP modules
now incorporate deep neural networks (DNNs) to enhance perfor-
mance. Previous research has demonstrated the effectiveness of
DNNs in individual ISP tasks [1–4, 6]. Furthermore, combining
modules such as denoising and demosaicing [7], denoising and
tone mapping [5], denoising and super-resolution [10], denois-
ing, demosaicing, and super-resolution [8, 9], and even the entire
ISP [12] was also found to reduce accumulated errors and com-
putational complexity.

However, AWB and denoising, being the two early steps in
the ISP pipeline, have not been thoroughly studied about whether
they can be combined into an end-to-end module or not. The inter-
action between AWB and denoising is particularly significant, as
noise can affect the accuracy of AWB and incorrect white balance
can change the noise distribution and then, affect the effective-
ness of denoising. To address this problem, we aim to answer two
specific questions in this study: 1) Can AWB and denoising be ef-
fectively replaced by a single DNN? 2) If it is desired to perform
them individually, which order can produce better image quality:
AWB followed by denoising (AWB & denoising) or denoising
followed by AWB (denoising & AWB)?

To explore these questions, we re-processed the benchmark
dataset [11] and conducted thorough experiments. Our results
show that performing AWB and denoising individually can out-
perform the end-to-end DNN approach. Specifically, performing
denoising before AWB improves image quality by 6 dB in PSNR
and 30% in MAE compared to the reverse order, as is shown in
Figure 1. These findings highlight the importance of sequencing
order in ISP pipelines and offer valuable insights for future DNN-
based ISP design and optimization.

Figure 1. Illustration of the three approches investigated in this study: an

end-to-end and two individual approaches (denoising before AWB, and AWB

before denoising) using the re-processed SIDD dataset [11].

Related work
We discuss DNN or AI-based AWB, denoising, ISP mod-

ules, and the importance of the order of the ISP modules here.

AI AWB AI-based AWB methods like FC4 [13], DMCC [17],
and LSMIU [16] have outperformed traditional methods such as
grey-world [14], shades of grey [18], and PCA-based [15] across
various scenes [1]. We use LSMIU, a UNet-based architecture,
as our baseline.

AI Denoising Traditional denoising methods such as median
filtering [20], bilateral filtering [21], and non-local means
(NLM) [22] have limited performance under extreme dark con-
ditions. AI denoising methods, such as those using DarkU [23],
have shown superior performance, particularly in the RAW
domain [19, 24, 25]. We use DarkU as our baseline due to its
generalizability and effectiveness.

AI ISP In addition to using a DNN to replace single modules,
researchers have explored using a single DNN to replace
multiple modules, such as denoising and demosaicking [7, 8],
denoising and super-resolution [10], and even three modules
like denoising, demosaicking, and super-resolution [9], or the
entire ISP pipeline [12]. Other researchers have proposed
multi-stage approaches to replace the whole ISP, such as
two-stage methods [27] for image restoration and enhancement,
and three-stage [28] methods for handling noise, color, and
brightness. Here, we investigate whether AWB and denoising
modules can be replaced by a single end-to-end DNN to mitigate
the potential accumulate error, which is a unique approach.

Order of modules in ISP Most papers focus on the order of de-
noising and demosaicking. The advantage of denoising then de-
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mosaicing [2, 30] is that the Poisson noise can be transformed to
white Gaussian noise using an Anscombe transform. However,
a comprehensive study [26] found that demosaicing and then de-
noising is generally better. To the best of our knowledge, we are
the first to explore the sequencing of DNN-based AWB and de-
noising, which is crucial for the design of modern ISPs.

Method
Problem definition This study aims to explore the effectiveness
of using an end-to-end DNN for AWB and denoising, and the
optimal order of performing AWB and denoising individually. We
compare the performance of the following approaches:

• End-to-end approach: Applying a single DNN to perform
both AWB and denoising simultaneously.

• Separate sequencing: Applying AWB and denoising indi-
vidually, with two orders:

– AWB & denoising
– Denoising & AWB

Evaluation metrics We use two metrics to evaluate the quality
of the final processed images: PSNR (Peak Signal-to-Noise
Ratio) and MAE (Mean Angular Error) to calculate the noise
and color error, respectively. For an RGB image, PSNR is
calculated by taking the mean squared error(mse) across all
channels and pixels with PSNR = 10 · log10

(
1.02

mse

)
. MAE

measures the average angular error between the predicted image
ŷi and the ground truth yi for all the pixels N in an image:
MAE = 1

N ∑
N
i=1

180
π

arccos(yi · ŷi) .

These metrics allow us to comprehensively evaluate the effec-
tiveness of the final image quality after AWB and denoising or
vice versa.

Model selection For the end-to-end strategy, we employ two
architectures: DarkU from [23] and UNet++ [31], which
enhances feature fusion through multi-level skip connections
and a multi-path structure compared to DarkU. While there are
more advanced DNN models available, our goal is to compare
the effectiveness of the end-to-end and individual processing
strategies. To ensure a fair comparison, we need to control vari-
ables; thus, if a more advanced model is used for the end-to-end
processing, the same model should also be used for the individual
processing. Given that AI AWB is well-represented by LSMIU
and AI denoising by DarkU, we chose DarkU and UNet++ for
our experiments. Such a choice allows us to maintain comparable
architectures and parameters between the two strategies, ensuring
a reasonable and controlled comparison.

Dataset selection and preprocessing We utilize the SIDD
(Smartphone Image Denoising Dataset) [11], which is specifi-
cally designed for real image denoising tasks. SIDD provides a
comprehensive set of noisy and clean image pairs captured un-
der various lighting conditions and different ISO settings, with
the higher ISO settings resulting in stronger noise. This makes it
an ideal dataset for evaluating the performance of our models in
real-world scenarios. The dataset includes RAW-noisy and RAW-
clean image formats, as well as metadata such as the white point
gains, Bayer pattern, and color correction matrix.

We preprocess the raw format to obtain the demosaiced
RGB-noisy image through the bilinear interpolation algo-
rithm [32], the corresponding white points (AWB ground truth),
clean RGB without AWB, and the final clean RGB with AWB for
different experiments. To verify the robustness of our strategy, we
manually divide the images into the low (5-200) and high (201-
1600) ISO categories. After removing obviously color-incorrect
images, we included 122 Low-ISO images and 116 High-ISO im-
ages in total. We randomly split the images into 70% for train-
ing, 20% for validation, and 10% for testing. All performance
evaluations are conducted on the testing set. The details of the
experiments and data usage are listed in Table 1.

Table 1. Different approaches and corresponding data usage.

Experiments\Data Noisy-RGB Clean-RGB
(without wb)

Clean-RGB
(with wb) White points

AWB only ✓ ✗ ✗ ✓

Denoising only ✓ ✓ ✗ ✗

AWB & denoising ✓ ✗ ✓ ✓

denoising & AWB ✓ ✓ ✗ ✓

End2end ✓ ✗ ✓ ✗

Experiments and results
Settings Our method is implemented using the PyTorch library
and trained on NVIDIA RTX4090 GPUs. The training images are
center-cropped to a size of 1024x1024 as input and output. We
use the Adam optimizer [29] with a cosine decay strategy, a maxi-
mum of 500 epochs, a batch size of 16, and a learning rate of 4e-4.

Results We evaluated the performance on the re-processed SIDD
dataset under two ISO ranges: Low-ISO and High-ISO. For the
end-to-end approach, the performance metrics, shown in Table 2,
indicate lower PSNR and higher MAE. In contrast, the individual
strategies, specifically denoising & AWB and AWB & denoising
orders, significantly outperformed the end-to-end approach. The
denoising & AWB order was found to be far superior to the re-
verse order, with a nearly 6 dB improvement in PSNR and a 30%
enhancement in MAE. Qualitative results as shown in Figure 2.

Discussion
Why denoising & AWB works better than AWB &denois-
ing The experiment results indicate that performing denoising
& AWB significantly improves image quality. One explanation
for such a finding is that AWB algorithms are sensitive to noise.
When noise is present, the AWB algorithm may incorrectly esti-
mate the white point, leading to poor color correction, and further
accumulating the color error to influence the subsequent denois-
ing processing. This is supported by an ablation study, in which
only using AWB under the two ISO settings showed that MAE
and illumination angular error are drastically reduced under high
ISO conditions, as shown in Table 3 In other words, by removing
noise first, the AWB algorithm can result in more accurate color
balance and better overall image quality.
Do Non-DNN and DNN methods perform the same for se-
quencing As we aim to verify the importance of the order
in DNN-based methods, one may ask if this still applies to
non-DNN-based methods. We conducted an ablation study us-
ing traditional AWB methods such as Grey-world [14], PCA-
based [15](p=3%), and SoG [18](p = 3), as well as denoising
methods such as median filter ( f = 3) and bilateral filter (σcolor =
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Table 2. Comparison between the end-to-end and individual strategies (denoising & AWB, AWB & denoising) across different ISO
levels, in terms of PSNR (higher is better) and MAE (lower is better).

Strategy\ Noisy level Low-ISO
(5-200)

High-ISO
(201-1600)

PSNR↑ MAE↓ PSNR↑ MAE↓

End-to-end DarkU [23] 29.5 4.2 28.8 5.1
UNet++ [31] 28.5 5.1 27.4 6.1

Individual denoising & AWB 36.0 2.8 33.4 3.0
AWB & denoising 30.5 4.1 28.8 4.2

Figure 2. Qualitative examples of images processed using different approaches: End-to-end, AWB before Denoising, Denoising before AWB, and Ground

Truth. The values shown are the PSNR (dB) and MAE (degrees).

Table 3. MAE values for only performing AWB under different
ISO conditions.

Low-ISO High-ISO
AWB only 3.4 5.8

75, σspace = 75). The results, as shown in Table 4, indicate that the
order of the two modules is only important for DNN-based meth-
ods. Another interesting finding is that the grey-world method is
not sensitive to noise levels, while PCA-based and SoG are very
sensitive. This is reasonable as the latter methods use bright pix-
els, which can be severely influenced by noise levels.

Conclusion
In this study, we investigated the efficiency of using a DNN-

based end-to-end strategy to replace the AWB and denoising func-
tions in ISP, and concluded that this approach is not effective.
Additionally, we examined the optimal sequencing for AWB and
denoising when processed separately. Our findings show that per-
forming denoising before AWB (denoising & AWB) significantly
improves image quality, with an increase of nearly 6 dB in PSNR
and a 30% enhancement in MAE compared to the reverse order.

These findings underscore the critical importance of sequencing
design in DNN-based ISP pipelines.
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