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Abstract
Despite significant advancements in single-view intrinsic im-

age decomposition, a domain disparity exists due to the limited
information that can be obtained from a single-view image and
the ill-posed nature of the problem of intrinsic image decompo-
sition. Multi-view images offer an alternative method to circum-
vent the ambiguity present in 2D intrinsic image decomposition.
Building on the concepts of multi-view intrinsic images and recent
neural rendering techniques, we propose Intrinsic-GS, a multi-
view intrinsic image decomposition method utilizing Gaussian-
splatting. To achieve this, we first augment each Gaussian el-
lipsoid with additional attributes (i.e., albedo, shading, and a
residual term) to model the intrinsic radiance field. Next, we
use several color-invariants and physics-based priors to jointly
regularize the optimization of the intrinsic and composited radi-
ance fields. Finally, we conduct experiments on both synthetic
and real-world datasets, demonstrating stable intrinsic decompo-
sition results across various (including non-Lambertian) objects
and scenes.

Introduction
Intrinsic image decomposition in computer vision offers op-

portunities to separate scene attributes like reflectance and shad-
ing, enabling better understanding and manipulation of visual
content. This can enhance applications in image editing, object
recognition, and scene understanding by providing clearer and
more interpretable representations of visual data. However, ac-
curately achieving intrinsic image decomposition has significant
challenges due to: (1) the difficulty in reconstructing the real-
world scene from images, and (2) the challenge of disentangling
the complex interplay of light, shape, and material properties in-
herent in real-world images. Despite the rapid development of
neural rendering methods [1, 2, 3, 4], which have made it easier
to represent a 3D scene from a set of images, the second challenge
remains.

Several studies address these challenges by integrating in-
verse rendering techniques with neural rendering [5, 6, 7, 8], de-
composing scenes into geometry, reflectance, and illumination
components. These approaches, however, are hindered by the
fundamental ambiguities and ill-posed nature of inverse render-
ing, which necessitate prior assumptions that restrict modeling
of mutual occlusions, inter-reflections, and indirect light propa-
gation among different objects—ultimately limiting accurate 3D
surface recovery and confining their utility to specific objects. A
recent advancement by [9], attempts to mitigate these issues by
incorporating intrinsic decomposition, i.e., separate an image to
the reflectance of the materials (albedo) and the effect of illumi-
nation (shading), into neural radiance fields [1]. This sidesteps

the complexities of estimating physically based rendering param-
eters required by physically based rendering models. Nonethe-
less, it struggles with decomposing high-frequency reflectance, is
less effective in outdoor settings, and the lengthy training times
(approximately 8 hours for a single object’s decomposition) hin-
der its practical application in real-world scenarios.

In this work, we propose a novel approach, namely Intrinsic-
GS, which incorporates intrinsic decomposition into the neural
rendering pipeline of 3D Gaussian Splatting (3D-GS) [4]. This
combination provides two benefits for disentangling the complex
illumination interplay in a 3D scene: 1) Intrinsic-GS circumvents
the need to model all complex physically based rendering com-
ponents directly, instead representing them through higher-level
abstractions like albedo, shading, and view-dependent residuals,
which grants enhanced flexibility for application in more com-
plex scenes. 2) Building on 3D-GS’s fast and high-fidelity 3D
reconstruction ability, Intrinsic-GS can reconstruct a scene and
its intrinsic components quickly and at a low computational cost,
significantly reducing the cost of creating an editable scene.

To introduce intrinsic decomposition into 3D-GS, we explic-
itly model the intrinsic radiance fields by introducing extra at-
tributes for each Gaussian, and jointly optimizing them with the
original Gaussian’s attributes (Details in Sec 3.1 and 3.2). Con-
sequently, intrinsic-specific rasterizers will aggregate the intrinsic
radiance and render it as the intrinsic components. To constrain
the intrinsic components, we apply a set of physically based (e.g.
color invariant) priors and/or learned priors to achieve the intrin-
sic decomposition in a self-supervised manner (Details in Sec 3.3
to 3.5). Building on carefully designed 2D and 3D constraints
and leveraging the self-clustered nature of 3D-GS, our method
does not require explicit semantic labels, which are required by
[9]. Moreover, since our method does not rely on accurate ge-
ometry reconstruction, we can also bypass explicit surface recon-
struction, which is a weakness of the original 3D-GS as indicated
by [10, 11].
Contribution We introduce intrinsic radiance fields into the 3D
Gaussian-Splatting pipeline, enabling novel-view intrinsic image
synthesis from object-centric data to real-world scenes. Lever-
aging a set of priors, our intrinsic radiance field is trained in a
self-supervised manner, obviating the need for explicit surface
reconstruction. Our method is simple yet efficient, it obtains a
scene level decomposition within 30 minute, ∼ 20x faster than
the Intrinsic-NeRF [9]. Table 1 shows a general comparison of
our method with the recent neural-based methods.

Related work
Our method builds on both intrinsic decomposition, i.e., sep-

arate the image into its albedo and shading, and inverse rendering,
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Table 1: General comparison with the advanced neural-based in-
verse rendering & intrinsic decomposition methods. Training-
time is evaluated on object-level dataset. N/A refers to no such
claim in the paper. N/A∗ refers to such a claim is made in the
paper but can not be observed from the data used here.

Method TensoIR [6] Intrinsic-NeRF [9] GS-IR [8] Ours

Geometry-free × ✓ × ✓
Various Material ✓ Some N/A ✓
Scene-level N/A N/A∗ N/A∗ ✓
Training-time 1h 8h 0.5h 0.5h

i.e., reconstruct the scene into its basic component based on cer-
tain rendering model (e.g. BRDF). We therefore, summarize both
of them as follows:

Intrinsic decomposition. One branch of intrinsic decomposi-
tion methods focuses on single-image analysis. Some works try
to address the intrinsic decomposition problem using traditional
optimization methods [12, 13, 14]. Following the success of deep
learning in other vision tasks, numerous methods have since em-
ployed neural network architectures for estimating these intrin-
sic characteristics [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28]. For a more detailed introduction, please refer to Garces
et al. [29]. More recently, with the development of generative
models, some methods [30, 31] have showcased to leverage the
distribution priors of generative models for estimating intrinsic
images. These methods generally provide increasingly superior
performance on images close to the learned distribution, yet often
fail against out-of-distribution data and cannot guarantee consis-
tent intrinsic imaging across the same scene.

Multi-view image intrinsic decomposition methods [32, 33,
34, 35, 36] naturally ensure consistent intrinsic imaging across
views and can achieve application like scene relighting [37].
However, these methods often require extra proxy geometry infor-
mation [34, 36] and cannot obtain intrinsic images from a novel
view.

Our method, on the other hand, builds on the 3D Gaussian-
Splatting. Such neural rendering method naturally provides the
ability to render consistent intrinsic images across views and is
able to generate novel-view intrinsic images in real-time, thanks
to the customized tile-based rasterizer in 3D-GS.

Neural rendering. The emerging of neural rendering methods
[1, 2, 3, 4] provide an alternative way to reconstruct the 3D scene.
Plenty of works combining neural rendering with inverse render-
ing [5, 7, 6, 8, 38] have shown realistic view synthesis and con-
sistent estimation of the underlying properties of the scenes. Yet,
such an approach often requires fine-grained surface reconstruc-
tion [38] and high-quality geometry [7, 6], limiting their applica-
tion to specific objects or indoor scenes. Recently, [9] introduced
intrinsic decomposition into NeRF, which implicitly represents
the scene using an intrinsic neural radiance field. Yet, it suffers
from long training times and is not applicable to complex scenes.
More recently, [8, 39] replace the NeRF with 3D-GS and achieve
a higher fidelity of inverse rendering results, while it is limited by
extracting the reliable geometry information from the 3D-GS rep-
resentation, which is the weakness of the 3D-GS representation
as indicated by [10, 11].

Our method, on the other hand, builds on the previously stud-
ied single and multi-view intrinsic imaging, and bypasses the need
for accurate reconstruction of surface and geometry and is able to
apply to a wider range of scenes.

Intrinsic-GS
We aim to obtain novel-view consistent intrinsic image in a

scene from multi-view images. To achieve this, we build on the
recent neural rendering method, 3D Gaussian-Splatting [4], and
integrate the intrinsic radiance field into 3D-GS. In the following
sections, we first recap the preliminaries about intrinsic decom-
position and 3D-GS, then we introduce how we model and con-
strain the intrinsic radiance field. Finally, we show how we jointly
optimize the intrinsic radiance field along with its corresponding
3D-GS. Figure 1 illustrates the Intrinsic-GS pipeline.

Preliminaries
Intrinsic decomposition. Lambertain reflectance and gray-

scale shading are widely employed in solving intrinsic decompo-
sition methods [26, 21] to simplify the inverse problem. Such
assumptions enable the decomposition of an input image I into its
illumination-invariant reflectance R(I) and illumination-varying
shading S(I) components as follows:

I = R(I)⊙S(I), (1)

where ⊙ denotes channel-wise multiplication. However, the Lam-
bertian model often falls short in realistic scenes with non-diffuse
surfaces, such as those exhibiting glossy reflections or metal-
lic properties. To address these limitations, the intrinsic resid-
ual model introduces a view-independent residual term Re(I)
[40, 41, 9], capturing the view-dependent effects not accounted
for by the Lambertian model:

I = R(I)⊙S(I)+Re(I), (2)

This model better accommodates real-world scenarios by incor-
porating additional components to handle specular highlights and
complex material properties.

3D Gaussian Splatting. As a recent trending in neural render-
ing, 3D Gaussian splatting is gaining lots of attention due to its
rapidly rendering speed. It can be regarded as a point cloud rep-
resentation, where each point is explicitly represented by a 3D
Gaussian functions G . It can be formulated as:

G (xxx|µµµ,ΣΣΣ) = exp
1
2
(xxx−µµµ)⊤ΣΣΣ

−1(xxx−µµµ), (3)

where µµµ is the spatial location of the Gaussian, the ΣΣΣ donates the
shape of the Gaussian. Each Gaussian is also accompanied by
an opacity α and a view-dependent color c (encoded by spherical
harmonics).

Given a specific viewpoint, the 3D Gaussians are projected
onto an image plane, resulting in 2D Gaussians. The color C of
the 2D image at pixel uuu can be calculated as:

C = ∑
i∈N

TiGi(uuu|µµµ ′,ΣΣΣ′)αici,Ti =
i−1

∏
j=1

(1−Gi(uuu|µµµ ′,ΣΣΣ′)αi), (4)
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Figure 1: The proposed Intrinsic-GS pipeline. We first initialize Gaussian kernels with extra intrinsic-related attributes, namely,
albedo, shading, and view-dependent residuals; then, we extend the original Gaussian Splatting’s tile-based rendering to three individual
rasterizers to render intrinsic images simultaneously. Gaussian’s intrinsic-related attributes are constrained by multiple priors (includes
priors for the intrinsic images and the final composited image), resulting in trained intrinsic radiance fields after convergence.

where, µµµ ′,ΣΣΣ′ are the projected mean vector and covariance ma-
trix of the Gaussian, respectively (details in [4]). Ti is the accu-
mulated transmittance, which quantifies the probability density of
i-th Gaussian at pixel uuu.

3D representation Intrinsic-GS aims to obtain intrinsic images
by reconstructing the 3D scene from multi-view images. This is
achieved by incorporating the reflectance model (here we employ
the dichromatic model, Eq. (2)), into the GS pipeline. The input
to our model is the same as that used by 3D-GS [4]. Intrinsic-GS
initializes with an SfM point cloud or a random point cloud. To
represent the intrinsic properties, we introduce extra attributes to
each Gaussian ellipsoid and employ additional tile-based rasteriz-
ers to aggregate the corresponding property:

ci = αriri ⊙ si + rei, (5)

where ri,si, and rei are the reflectance (albedo), shading, and
residual term at the i-th Gaussian, respectively. αri is the specific
opacity for reflectance. The reflectance-specific opacity is forced
to be either 0 or 1, which guarantees the reflectance attribute only
models the reflectance at the opaque body.

Intrinsic field initialization
Given N points as the initialization for 3D-GS, the intrinsic

field consists of attributes for modeling albedo, shading and view-
dependent residual, and they are initialized as follows:

Albedo. A three-channel attribute r ∈ RN×3 is employed to
represent albedo. It starts with the normalized color of the orig-
inal point cloud to roughly minimize the effect of shadows and
highlights.

Shading. Gray shading is assumed to reduce the complexity
of the inverse problem following [14, 27]. Thus, a single-channel
attribute s ∈ RN×1 is employed to represent shading. It is initial-
ized by the intensity of the color of the original point cloud.

Residual term. Following the gray shading assumption, a
near-natural white incident light is assumed. Hence, the residual
term is represented by an attribute re ∈ RN×3 with three repeated
channels.

Similar to the original 3D-GS [4], the number N of 3D Gaus-
sians is increased or decreased by duplicating or deleting 3D ellip-
soids. The number of components of attributes follow the change

of the number of 3D Gaussians. During training, those intrinsic
components are jointly optimized with the Gaussian’s shape and
position attributes. In the following subsection, we introduce the
related regularisation and constraints for the reflectance attributes.

Albedo constraints
Given the absence of ground-truth data for learning the

albedo reconstruction, we employ multiple color-invariant and
physics-based priors to constrain this process. Our approach is
three-fold: at the pixel level, we use the reflectance sparsity prior
to ensure that pixels with similar chromaticity share the same re-
flectance, following [14, 9]. At the edge level, we apply the cross
color ratio prior [42] to preserve the reflectance differences across
various materials. At the 3D spatial level, we utilize clustering
based on the albedo properties of Gaussians.

Pixel-level Following [14, 9], given an image I, the reflectance
chromaticity is approximated to C (x)= I(x)/∑r,g,b |I(x)|, then the
chromaticity similarity weight can be defined as ωcs(x,y) which
is associated with many priors:

ωcs(x,y) = exp(−αcs||C(x)−C(y)||22), (6)

where, x and y are the image pixel coordinates. In practice, coef-
ficient αcs is set to 60 to produce the best decomposition results.
Reflectance sparsity. When two pixels share similar spatial lo-
cations and chromaticity, their reflectance should also be similar.
We therefore, minimize the chromaticity difference according to

Lrs = ∑
y∈N (x)

ωcs||r(x)− r(y)||22, (7)

where, ωcs is predefined as the chromaticity similarity [14, 9], N
is the neighboring pixels.

Edge-level Inspired by Das et al. [26], we employ the cross
color ratios [42] to determine albedo color differences (i.e. albedo
edges).

Lccr = ||∆c(R′)−∆c(I)||22, (8)

where ∆c calculates the CCR (Cross Color Ratios). R′ denotes the
reflectance in the 2D image plane.

58 2024  Society for Imaging Science and Technology



GTGS-IR 
[CVPR 24]

Novel-view syntheticReflectance comparison

TensoIR 
[CVPR 23]

Intrinsic-NeRF 
[ICCV 23]

Careaga et al.
[ToG 23]

GS-IR 
[CVPR 24]

Ours 
Intrinsic-NeRF 

[ICCV 23]
TensoIR 

[CVPR 23] Ours GT 

Figure 2: Visual results on NeRF-blender dataset [1]. Our method outperforms the latest multi-view intrinsic decomposition and inverse
rendering methods. The state-of-the-art single view intrinsic decomposition method [27] is used as reference.

3D-spatial level Given the explicit nature of the 3D Gaussian
representation, we apply clustering on albedo attributes to en-
hance the reflectance consistency across views.

Similar to Bell et al. [14], we first convert the value of albedo
attributes (in RGB) to a 3-channel vector formulated by:

[r,g,b]→ [0.5 · r+g+b
3

,
r

r+g+b
,

g
r+g+b

] (9)

Then, we apply K-Means clustering on these converted vectors
to get the set of reflectance R. The number of cluster centers is
empirically set to 20. Finally, the reflectance R is projected onto
the 2D space denoted by R′. Details are formulated in Eq. (4).

Shading constraints
Smoothness prior Natural objects with smooth surfaces are

anticipated to exhibit gradual shading variations. Additionally,
this smoothness assumption is reinforced by using a pseudo-
normal to ensure consistent shading across similar surfaces:

Lsmo = ∑
y∈N (x)

ωcs||r(x)− r(y)||22||s(x)− s(y)||22 (10)

Residual prior To model non-Lambertian surfaces, a residual
term re is used to capture view-dependent effects, such as spec-
ularity and glossy reflections. Given that our method focuses on
real-world scenarios, where diffuse light generally predominates,
we aim to recover image content primarily through reflectance
and shading. Therefore, the following constraint is used:

Lres = ||re(x)||22 (11)

Jointly optimization
Intrinsic-GS is integrated into 3D-GS with additional at-

tributes to represent intrinsic components. Using differentiable
rasterizers [4], the pipeline is jointly optimized through photo-
metric loss Lrec [4] and unsupervised prior constraints. The final
loss is defined by:

L = λrecLrec +λrsLrs +λccrLccr +λsmoLsmo +λresLres, (12)

where λ represents the corresponding weight for each loss. We
set the weights empirically.

Evaluation
In this section, we demonstrate: 1) The high-quality intrinsic

decomposition achieved by Intrinsic-GS for different object-level
datasets. 2) The high-fidelity and consistent intrinsic decomposi-
tion results for real-world images. 3) A quantitative ablation study
evaluating the contribution of each employed prior.

Intrinsic decomposition for objects with different
material

In this section, intrinsic decomposition is presented for com-
monly used blender object datasets [1, 43]. Intrinsic-GS is com-
pared with recent state-of-the-art methods on intrinsic decomposi-
tion [26, 27] and neural rendering based inverse rendering [6, 8],
respectively. For image-based intrinsic decomposition [26, 27],
we employ their open-source models. For the neural rendering
based method, we train their models on each object following
their original implementations.

Figure 2 presents the reflectance decomposition results on
the NeRF-synthetic dataset [1]. Our method consistently per-
forms well on the evaluated scenes. Compared to [9], our method
is capable of reconstructing the albedo in higher frequency areas.
Notably, BRDF-based methods [6] and [8] exhibit leakage from
the shading.

Table 2 reports the quantitative comparison on Blender ob-
jects (hotdog, Lego, ficus, and drums). Numerically, our method
achieves state-of-the-art results across all metrics. Specifically,
our method outperforms others by a large margin on the percep-
tual metric [44], showcasing its superior intrinsic decomposition
capability.

To further evaluate our method’s robustness against chal-
lenging scenes, such as non-Lambertian surfaces, we conduct
experiments on the shiny-blender dataset [43]. Due to the un-
availability of ground-truth reflectance labels, we perform a vi-
sual evaluation. As illustrated in Figure 3, our method achieves
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Figure 3: Qualitative results on Shiny NeRF dataset [43]. Our method performs stable on the more glossy objects, showcasing the robust
design of our pipeline. The state-of-the-art single view intrinsic decomposition method [27] is used as reference.

Table 2: Numerical comparison of reflectance estimation on the
NeRF synthetic dataset [1]. First 2 rows are single-view intrin-
sic decomposition methods. Row 3 to 5 are the neural rendering
based methods.

Method MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓

PIE-Net [26] 0.0190 0.8323 21.2113 0.1217
Careaga et al. [27] 0.0067 0.8877 22.2881 0.1001

TensoIR [6] 0.0078 0.9230 23.7934 0.3790
Intrinsic-NeRF [9] 0.0032 0.9350 24.4061 0.3933
GS-IR [8] 0.0042 0.9002 25.9926 0.4744

Ours 0.0016 0.9436 26.1722 0.0706

stable results compared to other competitors. Notably, Intrinsic-
NeRF [9] fails to model shiny surfaces due to the limitations of the
original NeRF backbone it employs. Additionally, results from
Careaga et al. [27], GS-IR [8], and TensoIR [6] exhibit leakages
from shading or environmental illumination, which are caused by
the limitations of their modeling approaches.

Intrinsic decomposition for real-world scenes
In this section, we present the results of our intrinsic de-

composition on the MIP-360 dataset [2]. Again, no ground truth
reflectance labels are available. We compare Intrinsic-GS with
the state-of-the-art single-view intrinsic imaging methods [26, 27]
and the neural rendering-based method [8], which claims the ca-
pability for open-world reflectance decomposition. An evaluation
with [9] is omitted as it fails to reconstruct the scene. We do not
compare with [6], since it is only applicable to object-level data.

Figure 4 showcases our method’s capability in generating
novel-view intrinsic images. Compared to recent advancements
in single-view [27] and multi-view [8] intrinsic decomposition
methods, our approach demonstrates superior intrinsic estima-
tion in terms of view consistency and image quality. Notably, for

Table 3: Ablation study of the proposed constraint levels on re-
flectance.

Pixel Edge Spatial SSIM ↑ PSNR ↑ LPIPS ↓

✓ 0.9313 25.4476 0.0901
✓ ✓ 0.9402 26.1978 0.0875
✓ ✓ ✓ 0.9436 26.1722 0.0706

Careaga et al. [27] , the input image is the ground truth, while for
GS-IR [8] and Intrinsic-GS, all images are directly generated from
the neural rendering pipeline, indicating that these views were not
seen during training.

Ablation study
Ablation results are shown in Table 3. The three-level con-

straints help our pipeline achieve better reflectance estimation in
various ways. Specifically, without the 3D spatial clustering, an
increase in PSNR performance can be observed, indicating that
the introduced 3D spatial clustering may degrade the representa-
tion of color distribution. However, 3D spatial clustering is essen-
tial for achieving reflectance sparsity. Therefore, we will still in-
clude it in our full pipeline. Additionally, without the cross-color
ratio (CCR), the performance of our method decreases, highlight-
ing the importance of calculating edge-based information.

Recoloring
Here we showcase our method’s downstream application.

Intrinsic-GS is able to obtain intrinsic images from any given
view, and the intrinsic images can be used to achieve recoloring
via directly changing the color based on the albedo attribute.

Figure 5 and Figure 6 show the recoloring results on the
MIP-360 dataset [2] and the shiny-nerf dataset [43]. Despite
facing complex scenarios, stable recoloring results can be ob-
tained across the different viewing angles. This further proves
our pipeline’s excel ability to separate the intrinsic components.
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Figure 4: Real-world intrinsic decomposition visualization. Column 2 to 4 are the albedo estimation results from Careaga et al. [27],
GS-IR [8], and ours, respectively. Column 5 and 6 are the shading estimation results from Careaga et al. [27] and ours, respectively.
Notably, GS-IR [8] does not estimate shading.

Figure 5: Our method achieves real-time novel-view recoloring
on real-world scene. Left column: rendered novel-view image.
Right column: the recolored novel-view image. Zoom in to see
the details.

Figure 6: Our method achieves real-time novel-view recoloring
on shiny-reflected surface. Left column: rendered novel-view im-
age. Right 2 columns: the recolored novel-view image. Zoom in
to see the details.

Limitations
The intrinsic images may exhibit failure scenes if 3D-GS

cannot accurately represent the scene from a particular viewpoint.
However, this also implies that any improvements in the rendering
method would result in corresponding gains in the performance
of our model. Additionally, our method assumes neutral illumi-
nation; under more colorful lighting conditions, the color of the
light may leak into the albedo. Moreover, the original CCR is
designed for Lambertian-like surfaces, which may introduce arti-
facts when applied to high-frequency reflectance. Further study
into color invariants may address this issue.

Conclusion
We have proposed a pipeline, Intrinsic-GS, which integrates

intrinsic decomposition into 3D Gaussian-splatting. With only
multi-view images as input, our method is able to decompose a
scene into reflectance, shading, and a view-dependent residual.
Built on several physics-based and/or learned priors, the whole
decomposition process is trained in a self-supervised way. Once
trained, Intrinsic-GS can obtain consistent intrinsic images from
any novel views, significantly reducing the cost for downstream
applications like recoloring and material editing.
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[11] A. Guédon and V. Lepetit, “Sugar: Surface-aligned gaus-
sian splatting for efficient 3d mesh reconstruction and high-
quality mesh rendering,” in CVPR, 2024.

[12] R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Free-
man, “Ground truth dataset and baseline evaluations for in-
trinsic image algorithms,” in ICCV, 2009.

[13] J. T. Barron and J. Malik, “Shape, illumination, and re-
flectance from shading,” IEEE TPAMI, vol. 37, no. 8,
pp. 1670–1687, 2015.

[14] S. Bell, K. Bala, and N. Snavely, “Intrinsic images in the
wild,” ACM Transactions on Graphics (TOG), vol. 33, no. 4,
p. 159, 2014.

[15] Z. Li and N. Snavely, “Cgintrinsics: Better intrinsic im-
age decomposition through physically-based rendering,” in
ECCV, 2018.

[16] T. Narihira, M. Maire, and S. X. Yu, “Direct intrinsics:
Learning albedo-shading decomposition by convolutional
regression,” in ICCV, 2015.

[17] J. Shi, Y. Dong, H. Su, and X. Y. Stella, “Learning non-
lambertian object intrinsics across shapenet categories,” in
CVPR, 2017.

[18] T. Zhou, P. Krahenbuhl, and A. A. Efros, “Learning data-
driven reflectance priors for intrinsic image decomposition,”
in CVPR, 2015.

[19] D. Zoran, P. Isola, D. Krishnan, and W. T. Freeman, “Learn-
ing ordinal relationships for mid-level vision,” in CVPR,
2015.

[20] Y. Qian, M. Shi, J.-K. Kamarainen, and J. Matas, “Fast
fourier intrinsic network,” in WACV, 2021.

[21] Q. Fan, J. Yang, G. Hua, B. Chen, and D. Wipf, “Revisiting
deep intrinsic image decompositions,” in CVPR, 2018.

[22] A. S. Baslamisli, H.-A. Le, and T. Gevers, “Cnn based learn-
ing using reflection and retinex models for intrinsic image
decomposition,” in CVPR, 2018.

[23] W.-C. Ma, H. Chu, B. Zhou, R. Urtasun, and A. Torralba,
“Single image intrinsic decomposition without a single in-
trinsic image,” in ECCV, 2018.

[24] A. S. Baslamisli, P. Das, H.-A. Le, S. Karaoglu, and T. Gev-
ers, “Shadingnet: Image intrinsics by fine-grained shad-
ing decomposition,” IJCV, vol. 129, no. 8, pp. 2445–2473,
2021.

[25] S. Sengupta, A. Kanazawa, C. D. Castillo, and D. W. Ja-
cobs, “Sfsnet: Learning shape, reflectance and illuminance
of facesin the wild’,” in CVPR, pp. 6296–6305, 2018.

[26] P. Das, S. Karaoglu, and T. Gevers, “Pie-net: Photometric
invariant edge guided network for intrinsic image decompo-
sition,” in CVPR, 2022.

[27] C. Careaga and Y. Aksoy, “Intrinsic image decomposition
via ordinal shading,” ACM Transactions on Graphics, 2023.

[28] X. Xing, K. Groh, S. Karaoglu, and T. Gevers, “Intrinsic ap-
pearance decomposition using point cloud representation,”
arXiv preprint arXiv:2307.10924, 2023.

[29] E. Garces, C. Rodriguez-Pardo, D. Casas, and J. Lopez-
Moreno, “A survey on intrinsic images: Delving deep into
lambert and beyond,” IJCV, vol. 130, no. 3, pp. 836–868,
2022.

[30] P. Kocsis, V. Sitzmann, and M. Nießner, “Intrinsic image
diffusion for single-view material estimation,” in CVPR,
2024.

[31] Z. Zeng, V. Deschaintre, I. Georgiev, Y. Hold-Geoffroy,
Y. Hu, F. Luan, L.-Q. Yan, and M. Hašan, “Rgb \ ↔
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