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Abstract

The colorimetric calibration of cameras are critical in
imaging systems, with the sources used in light booths being
widely used in practice. These sources, however, may not good
presentations of the sources in real life, which possibly results
in poor colors. In this study, we adopted a genetic algorithm
and a large dataset of real light sources to identify an opti-
mal set of sources that can better represent the sources in real
life. The experiment results suggested that the identified set of
sources can result in better color performance. Moreover, the
selection of the sources was much less complicated in compar-
ison to manual selections, which can be considered and imple-
mented in practice.

Introduction

The colorimetric calibration is critically important to cam-
eras in a wide range of applications, which helps to ensure that
the images can be processed to have faithful colors as perceived
by the human visual systems. The selection of the calibration
sources is a critical task. On one hand, the sources are expected
to produce good performance when using cameras in practice.
On the other hand, the number of the calibration sources is ex-
pected to be smaller, as it affects the efficiency of the calibra-
tion on production line.

Various research work (e.g., [1-4]) and practical appli-
cations commonly use several sources (e.g., fluorescent day-
light, cool white fluorescent, incandescent ”A” and incandes-
cent "Horizon”) in standard light booths. These sources, how-
ever, were mainly selected for performing visual assessments
for applications such as textile, painting, and printing under
standard viewing conditions. They were not selected for per-
forming camera calibrations. This motivates us to investigate
whether a new set of sources should be used for camera cali-
bration, considering a wide range of sources in real life.

In this work, we proposed a data-driven searching method
to address such a problem, and included a large set of spectral
power distribuitons (SPDs) of light sources collected in real en-
vironment and the spectral sensitivity functions of 28 cameras.

Methodology
Preliminaries

In practical applications, camera colorimetric calibra-
tion refers to transform the colors from a camera-specific
color spaces (i.e., device-dependent color space) to a device-
independent color space (e.g., XYZ, sRGB, P3, or Rec 2020),
which is commonly achieved through a linear transformation
using a color correction matrix (CCM) 733 (note: the CCM
here refers to the transformation without white balancing). Ide-
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ally, a unique CCM is needed for each light source for a cam-
era, considering the metamerism between the CIE color match-
ing functions and the camera spectral sensitivity functions [6],
but such a method is only used in color reproduction in lab-
oratory. Commonly, CCMs are calibrated under several light
sources in laboratory, and interpolations are then performed on
these calibrated CCMs based on the white point or CCT esti-
mated by the camera when used in practice.

A simple interpolation method, as recommended by
Adobe [14], is based using two CCMs Ty, and T}, that are cal-
ibrated under two light sources L and L, with one having a
relatively low correlated color temperature (CCT) (e.g., 2700
K) and the other having a relatively high CCT (e.g., 6500 K).
For the white point estimated for a certain image L, the CCTy,
can be estimated in an interactive way, as explained in Algo-
rithm 1. The estimated CCT CCTy, is then used to interpolate
the CCM Ty, using Ty, = w1 Ty, +wyTy,, where wy and wy are
weightings based on CCTy, CCTy,, and CCTy,, as calculated
using Eq | and w; +w, = 1. It is worthwhile to mention that
the interpolation is performed using the reciprocal of the CCTs,
since it is more uniform than the CCTs.

1 1
CCT, ~ CCTy,
L W M

CCT, ~ CCTy,

Such a method can be improved by considering additional
calibration sources. In particular, we can include additional
light sources in calibration. Instead of performing the inter-
polation using two fixed sources, it can performed using two
sources Lyeqr, and Lyeqr, that are most similar to the estimated
white point in the camera-specific color space. The corre-
sponding matrices can be used for CCT estimation and also
the derivation of the CCM. The light sources in the standard
light booths are commonly used in such a way for camera cali-
bration.

This method can be expanded to achieve more precise re-
sults by incorporating additional calibration light sources. In-
stead of limiting the process to just two light sources, a broader
array of light sources can be utilized to generate a more com-
prehensive set of CCMs. For any given raw input image,
the illumination color is identified using its RGB value in the
camera-specific color space. To refine the estimation of the fi-
nal CCM, the two nearest calibration light sources, Ly, and
Lyear,, are determined based on their Euclidean distance from
the input image’s illumination. The CCM interpreted from
Thear; and Tpeqr, is expected to yield better results than that
interpreted from 77, and 7j,. In practice, sources in standard
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light booths are commonly used for camera calibration in this
way.

Algorithm 1: CCT estimation algorithm
Input: RGB;: the RGB value of the estimated white
point in the camera-specific color space
CCTp, and CCTp,: the CCT of Ly and L,
Tp, and T,,: the CCM of Ly and L,
&: an error item to stop the iteration (e.g., can
be set to 10)

Output: CCTy: the CCT of L
1 CCTyu <+ CCTy,
2 CCTy, + CCTy ;
3 while |CCT,,;, — CCTy| > 6 do

4 CCTyus + CCTy,

5 if CCT, < CCTy, then

6 | T+« 1T,

7 end

8 else if CCT; < CCTy, then

1 1
9 wi < 7@7@ 5
CCTy, *@

10 wy — 1 —wy;

11 T < w1y, +woTp,
12 end
13 else

14 T <+ T,
15 end
16 XYZ; < T xRGBy ;
17 CCTy, < XYZtoCCT (XYZy) s

18 end

Problem formulation

With the above in mind, we aim to select a set of light
sources @, that can be considered as good representations of
the sources in real life and result in more accurate estimation
of CCT, and also try to limit the number of the sources in the
set.

In other words, given a RAW image captured by a camera
u under a light source i, with the white point of RGB,,; and a
set of calibration light source ¢, the objective function can
be defined as the difference of the reciprocal of the CCT values
between the ground-truth and the estimation. Moreover, the
selection of the calibration sources should consider different
cameras, so that such a set can be used for different cameras.

m | 1 1

/ 1 i=11CCT;  CCT;
CCT = 7. | -

|Vean uéy,, m

(€5

where W,,, represents a set of cameras that are considered, m
is the total number of light sources, CCT; is ground-truth CCT
value of a light source i derived from the source’s spectrum,
and CCT;; is the estimated CCT of the light source i that is
derived using Algorithm | using the two calibration sources in
Qopr that have the most similar white point to the light source i
in a camera-specific color space.

Search algorithm

The search for the optimal set of light sources ¢, can
be formulated as a subset selection problem, where the goal is
to find the best set of light sources among all possible combi-
nations. The number of combinations to consider can be quite
large, given by C;,,, where m is the total number of light sources
to be considered and # is the number of calibration light sources
selected.

Instead of exhaustively evaluating all possible combina-
tions, a genetic algorithm can be an alternative with a higher
efficiency. It iteratively refines the selections to converge to-
wards an optimal set [8].

To perform the search, the algorithm encodes each possi-
ble solution s; as a binary vector of size m, where only n ele-
ments of this vector are assigned a value of 1, indicating that
the corresponding source is selected as the calibration source.
For example, the solution of [1,1,0] represents a case where
there are three light sources and the first and second are se-
lected. The pseudo-code, as written in Algorithm 2, outlines
the algorithm. It is important to note that the crossover and
mutation operations can be defined arbitrarily, as long as the
subset constraint is satisfied.

In this particular implementation, the crossover operation
selects values randomly from both parents. It alternates be-
tween choosing a value from the first or second parent until
enough numbers are selected to form a valid solution. The
mutation operation randomly replaces a selected light source
with another one that has not been selected yet. The algorithm
employs tournament selection [9] as the strategy for selecting
parents for the next generation.

The complexity of this algorithm is linearly correlated to
the product of the population size and the number of search
iterations, which is significantly smaller than the number of
all possible combinations of light sources Cj,. Thus, it al-
lows a balance between computational efficiency and the per-
formance, which enables to derive a good set of light sources.

Experiment and results

The experiment was performed using a total of 415 light
sources, which cover a wide range of sources with the spectra
collected in our previous study [10]. Figure | shows the chro-
maticities of these light sources in the CIE 1931 chromaticity
diagram. On the other hand, the experiment was carried out
to consider 28 cameras, whose spectral sensitivity functions
were measured in [11], with 20 of the cameras randomly se-
lected as the training set and the other eight cameras, including
Canon 1D MarklIII (MarklIII), Canon 20D (20D), Canon 500D
(500D), Nikon D300s (D300s), Nikon D700 (D700), Olympus
E-PL2 (E-PL2), Phase One (One), and Point Grey Grasshopper
50S5C (50S5C), selected as the testing set. For comparison, six
light sources that are commonly used in light booths were used
as a baseline condition, including Horizon (HZ), Incandescent
light (A), Cool White Fluorescent (CWF), Triphosphor Lamp
(TL84), Ultralume 3000 (U30), and Daylight 6500 K (D65).
The Xrite ColorChecker was used to derive the CCMs, and the
CCT was calculated using [13] was followed for computing the
CCT.

When performing the search algorithm, the population
size was set to 500, and the number of search iterations was
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Algorithm 2: Optimal light sources search algo-
rithm
Input: ¢;;;: a set of all possible light sources
Weam: a set of cameras
N: number of selected calibration sources
P: population size for the search
E: number of search iterations

Output: ¢,;: a set of light sources selected
1 fori<+ 1toPdo
2 ‘ s; < random_encoding(N, |9 |);
3 end
4 Spar — {Sl 382, ~~-7SP}, Opest <= 2, Spest < 6 5
5 fore<1toE do

6 fori< 1toPdo

7 0i < Lif (Sis Pit, Weam) 5

8 if 0; < 0pes; then

9 ‘ Obest <= Oi> Shest <~ Si ;

10 end

11 end

12 Secni < selection(Spar, Opar) ;

13 while |Sp;| # [Spar| do

14 {Sa,sp} < random_pick(Spar) ;
15 Seni < (Seni Ucrossover(sq,sp))
16 end

17 Spar < mutation(Sep;) ;
18 end

19 Qopr < decode(Spey)

set to 300. The implementation of the algorithm was carried
out using the pymoo library [12].
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Figure 1. Chromaticities of the 415 light sources in the CIE 1931 chro-
maticity diagram
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Result

The first experiment was carried out following Adobe’s
recommendation, with only two sources selected for calibra-
tion. In particular, Illuminant A and D65 were selected as
the baseline for comparison. The spectra of the two selected
sources are shown in Figure 2. Table | summarizes the re-
sults, in terms of the average error of the reciprocal of CCT.
The sources that were selected as the calibration sources were
excluded when evaluating the performance. It is obvious that
the selected sources were able to reduce the error by 11.97%
on average, though the performance varied with cameras due
to the different spectral sensitivity functions. The most signifi-
cant reduction was around 30%. Moreover, the CCT values of
the two selected sources are 3416K and 4356K, whose differ-
ence is much smaller than that between Illuminant A and D65,
whcih could be due to the distribution of the 415 sources.

Table 1: Comparison of the performance using llluminant A
and D65 versus two selected sources, in terms of the aver-
age error of the reciprocal of CCT.

Camera A and D65 Two selected sources Error|
(x1079) (x1079)
50S5C 4.27 391 8.43%
One 3.80 3.41 10.33%
D700 0.83 0.75 9.74%
MarklIIl 1.11 1.00 9.79%
D300s 1.23 0.86 29.83%
E-PL2 1.45 1.16 20.15%
500D 1.30 1.27 2.90%
20D 0.86 0.82 4.57%
Average 1.86 1.65 11.97%
1.0 —— Source 1
Source 2
08
g 0.4 v
0.2
0.0
380 430 480 530 580 630 680 730 780
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Figure 2. Spectra of the two selected sources, with CCTs of 3416K and
4353K

In the second experiment, we considered to select six
sources, and the six sources used in the viewing booths used
as the baseline, with the results summarized in Table 2 and the
spectra shown in Figure 2. It can be observed that using six
sources can generally result in smaller errors, in comparison
to using two sources. Also, the selected sources can generally
reduce the errors by 10% on average, though the performance
still varied with cameras.
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Table 2: Comparison of the performance using six sources
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in the viewing booths versus six selected sources, in terms & 17
of the average error of the reciprocal of CCT. E
Camera Sources in booths | Six selected sources Error| E 16
(x1079) (x1079) o
5085C 3.06 3.01 1.60% Y15
One 3.64 3.72 224% ©
D700 0.81 0.73 10.92% g 1.4
MarkIII 0.97 0.92 5.15% g
D300s 1.03 0.87 15.56% o
E-PL2 1.32 1.16 12.59% §13
500D 1.37 1.19 12.95% %
20D 0.89 0.73 18.06% 1.2 e 16 18 20
Average 1.64 1.54 9.32% Number of light source
Figure 4.  Change of performance, in terms of the average error of
1.0 — reciprocal of CCT, with the number of selected sources for calibration.
0.8
Conclusion
2 2232:; This study was designed to investigate whether camera
§ Source 3 colorimetric calibration should be performed using a better set
2 Source 4 of calibration sources, instead of the sources commonly used in
2ot §ZEI§Z‘Z standard viewing booths. We used a generic algorithm to de-
rive an optimal set of calibration sources that can improve the
02 accuracy of the CCT estimation. In total, 415 sources whose
spectra were collected in real life and 28 cameras were con-
0.0 sidered. The results clearly suggest that a set of calibration
380 430 480 530 580 630 680 730 780

Wavelength (nm)

Figure 3.  Spectra of the six selected sources, with CCTs of 2741K,
5346K, 5099K, 2660K, 2709K, and 6770K

Optimal number of calibration sources

It is logic to hypothesize that greater number of calibra-
tion sources can generally improve the accuracy, which is also
suggested in Tables | and 2. Thus, we aimed to test such a
hypothesis by setting different numbers of calibration sources,
from 2 to 20. Figures 4 shows the results, in terms of the error
of reciprocal of CCT.

The results clearly supported our hypothesis, and the per-
formance would no longer improve when the number of the
sources reached 14.

Discussion

The results presented above provide a good perspective to
consider how to perform camera color calibration nowadays.
With the wider range of light sources and easier method to pro-
duce different sources in laboratory, it merits further investi-
gations on the light source selections. Also, the investigations
here only focus on the estimation of CCT, and further investi-
gations on color accracy is needed.

On the other hand, further validations are needed if addi-
tional cameras are included, since the spectral sensitivity func-
tions significantly affect the color accuracy of cameras.

sources that are carefully selected can increase the accuracy of
CCT estimation, with an average increase of 10%. Also, the
greater the number of the calibration sources can effectively
improve the accuracy, but such an improvment stops around 15
sources. Further investigations are needed to consider different
cameras and also color reproduction accuracy, all of which can
bring direct benefits to the industry.
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