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Abstract
Neural image compression employs deep neural networks

and generative models to achieve impressive compression rates
and reconstruction qualities compared to traditional signal-
processing-based compression algorithms such as JPEG. How-
ever, color artifacts that arise in an image as the amount of com-
pression increases have not been formally analyzed for neural-
based compression algorithms. This paper provides an initial in-
vestigation into the degradation of color when images are com-
pressed at comparable bit rates using lossy neural image com-
pression and variants of JPEG. Our findings indicate that neural
image compression degrades color more gracefully than JPEG,
JPEG 2000, and JPEG XL.

Introduction
Lossy neural image compression is an emerging research

area that has shown promise in achieving more optimal rate-
distortion (RD) trade-offs than prominent classical compression
algorithms such as JPEG. While JPEG compression’s impact on
image quality has been thoroughly studied [1, 13, 18], the effect
on image characteristics and the type of artifacts that arise is less
understood for neural compression methods. Neural compression
achieves impressive compression rates through data-driven train-
ing that allows the deep network to produce plausible hallucina-
tions to recover the image content. This neural-based approach
contrasts sharply with JPEG’s frequency domain quantization ap-
proach.

The impetus for this paper is to explore how color is im-
pacted by neural compression methods as the compression rate
increases (i.e., bit rates are reduced). In particular, we focus on
lossy neural compression methods that are trained to optimize
Shannon’s RD objective [12], where distortion is evaluated using
the peak signal-to-noise ratio (PSNR) in a standard RGB color
space (sRGB), and the rate is measured in bits per pixel (bpp).

Specifically, we examine neural compression models pro-
vided in the CompressAI library [3] against JPEG [16], JPEG
2000 [15], and JPEG XL [11] on 100 randomly selected images
from the Vimeo90k [17] test set. We analyze how the original
image’s color —in L∗a∗b∗ space— changes as the image is com-
pressed at different bit rates by neural image compressors and
JPEG variants. To provide a quantitative metric to measure the
degradation in color representation, we compare the difference in
unique a∗b∗ coordinates of the images in L∗a∗b∗ space. This aims
to provide a deeper understanding of the amount of hallucination
from the neural compressors (i.e., variance in unique a∗b∗ coor-
dinates between compression levels to quantify hallucination or
color degradation). Fig. 1 shows an example of the reduction in
a∗b∗ coordinates between JPEG and a neural compressor at com-
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Figure 1: Comparison of the a∗b∗ coordinates between an orig-
inal image and its compressed counterparts using a neural com-
pressor [2] and JPEG compression [16].

parable bit rates. In addition, our analysis includes examining
each method’s average Delta E 2000 (∆E00) error across differ-
ent compression levels to provide an estimate of perceptual color
distortion.

Our analysis found that neural compression schemes were
much more graceful in their degradation of color than JPEG,
JPEG 2000, and JPEG XL. Overall, neural compressors provide
competitive RD trade offs and gracefully degrade color across all
methods analyzed, especially at bit rates lower than those achiev-
able by the JPEG methods tested. The remainder of this paper de-
scribes related work, the methodology for analysis, and our find-
ings.

Related Work
JPEG remains the most used form of lossy compression

for image data. Standardized in 1992, JPEG transforms non-
overlapping eight-by-eight image patches using the discrete co-
sine transform (DCT) and achieves compression by discarding
high-frequency information and quantizing the remaining infor-
mation referenced to a quantization table before entropy coding.

JPEG 2000 operates similarly to JPEG, with the predomi-
nant difference being that the method opts for the discrete wavelet
transform in place of DCT and provides benefits in the flexibility
of the code stream. JPEG XL supports both lossy and lossless
compression, offering better compression rates than JPEG, and
can be applied to images with dimensions over one billion [14].
Similar to the original JPEG implementation, JPEG XL uses DCT
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Figure 2: Comparison of the a∗b∗ coordinates between an orig-
inal image and its compressed counterparts using a neural com-
pressor [2] and JPEG compression [16].

blocks. However, the blocks can be of varying sizes. Note that
while JPEG 2000 and JPEG XL are feature-rich, they have not
achieved the same adoption as the original JPEG.

Neural image compression models are commonly based on
a deep learning architecture known as the autoencoder, where the
first part of the network, the encoder, transforms the image from
pixel space to a learned latent representation. The image is recon-
structed from this latent representation back to pixel space by a
mirrored set of operations known as the decoder. To effectively
compress the image using neural networks, the entropy of the la-
tent representation is used to compress the latent code into a byte
string using deterministic entropy coding methods, accompanied
by entropy models (i.e., because the latent representation does not
guarantee a reduction in entropy). A quantization step usually ac-
companies this and further discards information in the compres-
sion process.

More recent works have employed generative models such
as Generative Adversarial Networks (GANs) [5], variational au-
toencoders (VAEs) [8], and diffusion models [6] to enhance re-
construction quality [9, 7]. Generative models are particularly
well positioned for lossy image compression as they are capable
of hallucinating information discarded in the encoding process.
However, such methods are also prone to hallucinating informa-
tion that does not exist in the original image.

CompressAI is a Python library that provides access to neu-
ral image compression model architectures and sets of pre-trained
weights for each model. The models provided in the library were
introduced in the following works: “Variational Image Compres-
sion With A Scale Hyperprior” [2], which uses a hyperprior net-
work along with a VAE; “Joint Autoregressive and Hierarchical
Priors for Learned Image Compression” [10], which explores the
use of alternate entropy models; and “Learned Image Compres-
sion with a Discretized Gaussian Mixture Likelihoods and Atten-
tion Modules” [4], which uses discretized Gaussian Mixture Like-
lihoods to parameterize the distributions of latent codes to achieve
a more accurate entropy model. The work in [4] uses attention-
based models to increase performance but requires much more
training time due to the computational complexity of the trans-
former architecture. Due to the computational complexity of
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Figure 3: Rate-distortion values for each compression method
in this analysis. The neural compressors perform much better
concerning rate distortion at and beyond comparable bit rates to
JPEG, JPEG 2000, and JPEG XL.

training, the CompressAI library provides a smaller set of pre-
trained weights for the attention-based models.

For neural compression algorithms, a single set of weights
is required for a respective compression level, which has been
explicitly optimized for an RD trade-off. The CompressAI library
provides the ability to select from six to eight pre-trained weights,
where each set of weights is referred to as a “quality level” or a
hand-selected point on the RD curve (i.e., one and eight refer to
the lowest and highest bit rate and PSNR, respectively). These
quality levels are ambiguous, as they are arbitrarily chosen by
the developers of the CompressAI library and relate to how the
optimization function for the neural compressors is weighted to
permit distortion at training time.

The cost function that optimizes the neural compression
models in the CompressAI library, where D denotes mean squared
error (MSE), and R denotes bits per pixel (bpp), is given by :

L = λ ∗2552 ∗D+R, (1)

where λ is a hyper-parameter that determines the amount of per-
missible distortion in the reconstruction (i.e., a lower λ value al-
lows for more significant distortion, and a higher λ allows for less
distortion). Eight different lambda parameters are associated with
a particular “quality level.” In the case of CompressAI, quality
level 1 refers to the most error permissible in the image recon-
struction (i.e., low bit-rate, high distortion), and quality level 8
refers to the least amount of error permissible (i.e., high bit rate,
low distortion) in the image reconstruction. It is worth noting that
other image-quality metrics can be substituted to compute distor-
tion D.

Method
Three unique neural image compression models and their

two variants were used to compress 100 randomly selected im-
ages from the test split of the Vimeo90k dataset. Three variants of
JPEG were also tested on the same set of images to provide a com-
parison to classical compression methods. Those methods were
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Figure 4: Average cumulative change in unique a∗b∗ coordinates
across 100 randomly selected images in the Vimeo90k test set be-
tween compression rates (i.e., low to high) for neural image com-
pressors, JPEG, JPEG 2000, and JPEG XL. The x-axis, denoted
“Quality transition index,” determines the change between one
compression “quality” level to the next (i.e., Eight quality levels,
seven transitions in quality. Transition index “1” denotes the tran-
sition from compression quality eight to quality seven, “2” from
seven to six, and so on). The y-axis shows the average change in
unique a∗b∗ coordinates across the test set from one quality to the
next lowest quality.

JPEG, JPEG 2000, and JPEG XL. The 100 test images were ran-
domly selected from the Vimeo90k test portion, as the dataset’s
training portion optimizes the pre-trained weights provided by the
CompressAI library for each neural image compressor. Therefore,
testing on this data provides a fair comparison between the neural
compression algorithms and JPEG variants.

Each 100 randomly selected images from the Vimeo90k test
set were compressed and reconstructed at each of the eight quality
levels available for the neural compressors. For the JPEG vari-
ants, parameters were chosen to most closely match the bit rates
spanned by the neural compressors as seen in Fig. 3 to provide
a fair comparison. However, since the neural compression algo-
rithms can compress at ratios greater than JPEG, there are exam-
ples of processed images from the neural compressors at much
lower bit rates than achievable with JPEG-based methods.

Images compressed by each method were then converted
from sRGB to L∗a∗b∗ and plotted for comparison. The a∗b∗ co-
ordinates were quantized from floating point representation to in-
tegers such that there are 255 unique values for a∗ and b∗ respec-
tively, and the number of unique a∗b∗ coordinates per image was
computed to generate the quantitative results. The difference in
the number of unique a∗b∗ coordinates is computed among qual-
ity levels for each method and used as a metric to measure the
reduction or hallucination of total unique colors between com-
pression levels. In other words, this visualization provides an un-
derstanding of the capacity of compression methods to represent
color as compression increases and image quality is reduced. The
average color difference was also computed using ∆E00 between
the original 100 images from the test dataset and their compressed
counterparts for each method and compression level. ∆E00 is used
as a proxy to quantify the perceptual color difference between the
original image and its compressed version. The ∆E00 results can
be seen in Fig. 5.
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Figure 5: The rate-distortion values for each compression method
in this analysis, where distortion is measured via ∆E00. The neural
compressors perform better at and beyond comparable bit rates to
JPEG, JPEG 2000, and JPEG XL.

Results
Fig. 4 shows the average change in unique a∗b∗ coordinates

from the highest quality (i.e., highest bit-rate and lowest distortion
for each method) to the lowest quality (i.e., lowest bit-rate and
high distortion for each method). The x-axis denotes the change
from one quality level to the next, and is referred to as the “Qual-
ity transition index”. This means that a plot point at quality tran-
sition index “1” denotes the increase or reduction in unique a∗b∗

coordinates from quality eight to quality seven for each method.
The rest of the quality indices continue this pattern in descending
order of compression quality. This plot further shows a cumula-
tive change, meaning quality transition index seven denotes the
total unique a∗b∗ coordinates hallucinated or reduced across all
compression quality levels for the respective method.

It can be observed that the standard deviation of the neural
compression algorithms is much lower between quality transition
levels than JPEG, especially for low-bit rates (i.e., increased com-
pression). In the mid-bit-rate regime, JPEG distorts the unique
a∗b∗ coordinates beyond those in previous compression levels.
Interestingly, JPEG XL performs best overall in unique a∗b∗ co-
ordinates retained by the highest compression rate (i.e., lowest
bit rate, highest distortion), albeit at a worse compression ratio
than the neural compressors. JPEG 2000 performs significantly
better than JPEG but worse than the neural compression algo-
rithms. In contrast, the neural image compression algorithms be-
have more consistently and similarly reduce the unique a∗b∗ co-
ordinates across the different methods. While this metric does not
elucidate the types of hallucinations caused by the neural com-
pressors, it shows that neural compression reduces the number of
unique a∗b∗ coordinates in the image less than that incurred when
using JPEG or JPEG 2000 at and beyond comparable bit-rates and
especially in the low-bit-rate regime.

Fig. 1 and Fig. 2, show the a∗b∗ coordinates of an image
compressed at comparable bit rates via neural compression and
JPEG. While the neural compressor modifies the distribution and
reduces the number of unique colors measured by unique a∗b∗

coordinates, the degradation is far more “graceful” than JPEG,
which seems to collapse to a small set of hues in the low-bit-
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rate regime. Fig. 5 shows the average ∆E00 between the original
100 images used for testing and the output of each compression
method across bit rates. The plot shows that the neural compres-
sors perform better in terms of ∆E00 in the low-bit-rate regime
and at bit rates comparable to JPEG, JPEG 2000, and JPEG XL.
Also, the JPEG color degradation at low bit rates is much more
significant according to ∆E00 than PSNR.

Concluding Remarks
This paper analyzes the color degradation of neural image

compressors compared to JPEG, JPEG 2000, and JPEG XL. Our
analysis found that when compared at similar bit rates, neural im-
age compressors degrade color more gracefully than the JPEG
variants. In particular, the number of unique a∗b∗ color coor-
dinates remained significantly more consistent, and ∆E00 values
were lower as the compression rate was increased than observed
in the tested JPEG variants. JPEG XL’s performance in the re-
tention of color as bit rates reduced was impressive, albeit at
higher bit rates than achieved by the neural compressors. Over-
all, the neural compressors behaved consistently between meth-
ods, whereas there was more variability between JPEG methods.
As neural compressors become more prominent, it is important
to understand the types of artifacts they introduce as compression
levels vary.

We note that many of the neural compression methods used
in this analysis have been superseded in favor of diffusion and
GAN-based compression models that perform better with respect
to RD. However, training a diffusion-based neural compressor
model for a particular RD performance often requires weeks on a
large GPU cluster. This need for substantial computing resources
hinders the ability to effectively analyze many emerging diffusion
and GAN-based neural compressors to understand their charac-
teristics at different quality levels.
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