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Abstract
This paper presents a novel approach for spectral illuminant

correction in smartphone imaging systems, aiming to improve
color accuracy and enhance image quality. The methods intro-
duced include Spectral Super Resolution and Weighted Spectral
Color Correction (W-SCC). These techniques leverage the spec-
tral information of both the image and the illuminant to perform
effective color correction. Experimental evaluations were con-
ducted using a dataset of 100 synthetic images, whose acquisi-
tion is simulated using the transmittance information of a Huawei
P50 smartphone camera sensor and an Ambient light Multispec-
tral Sensor (AMS). The results demonstrate the superiority of the
proposed methods compared to traditional trichromatic pipelines,
achieving significant reductions in colorimetric errors measured
in terms of ∆E94 units. The W-SCC technique, in particular, in-
corporates per-wavelength weight optimization, further enhanc-
ing the accuracy of spectral illuminant correction. The presented
approaches have valuable applications in various fields, includ-
ing color analysis, computer vision, and image processing. Fu-
ture research directions may involve exploring additional opti-
mization techniques and incorporating advanced machine learn-
ing algorithms to further advance spectral illuminant correction
in smartphone imaging systems.

Introduction
Color Correction (CC) aims to ensure that the colors in an

image appear consistent and accurate, regardless of variations in
lighting conditions or the color temperature of the light source,
thus enabling reliable color analysis and interpretation of images.
This task is particularly important in fields such as digital photog-
raphy, remote sensing, surveillance, medical imaging, and indus-
trial inspection, where precise color information is essential for
accurate object detection, classification, and analysis.

A closely related task is that faced by Color Adaptation
Transforms (CATs), i.e. to predict “corresponding colors,” that is,
a pair of colors that have the same color appearance when viewed
under different illuminants. Many CATs have been developed in
the last 20 years [1, 2, 3, 4, 5, 6]. Recently, Burns proposed a new
CAT [7] that does not operate on the standard von Kries model
of adaptation, but it uses a spectral reconstruction technique as an
intermediate stage in the process, while still requiring only tris-
timulus values as inputs. In this work, we investigate if such idea
could be implemented in a reliable and efficient way for color
correction in smartphones even when filter transmittances are un-
known, and the source illuminant RGB tristimulus values are not
known but have to be estimated from the image itself.

This work focuses on the development of an innovative spec-

tral illuminant compensation technique. The idea is to recover as
accurately as possible the spectral information of both the image
and the illuminant, and training a weighted spectral compensation
technique (W-SCC) that optimizes a per-wavelength weight ma-
trix to compensate for possible spectral reconstruction errors. Our
W-SCC method is therefore independent from the specific illumi-
nant estimation algorithm(s) used, and from the specific spectral
reconstruction algorithm adopted.

The proposed approach can also leverage the advances in
Ambient-light Multispectral Sensors (AMS), which are hardware
modules integrated into certain smartphone models capable of
capturing multispectral information of the scene. By combin-
ing the AMS data with the illuminant estimates obtained through
Auto White Balance (AWB) algorithms, a joint estimation ap-
proach is also developed. We show in our experiments that this
joint estimation scheme improves the robustness and accuracy of
the illuminant estimation, enabling more effective spectral illumi-
nant correction.

The potential applications of the proposed technique are
wide-ranging and not limited to digital photography. In industrial
inspection tasks, accurate spectral illuminant correction can im-
prove defect detection and material identification, leading to more
reliable quality control processes. In remote sensing applications,
the precise rendering of colors can enhance the analysis of satel-
lite images for environmental monitoring, land cover classifica-
tion, and vegetation assessment. Additionally, in surveillance and
security systems, accurate spectral illuminant compensation can
enhance object recognition and tracking algorithms, improving
overall system performance.

Methodology
In this section, we present the methodology employed in our

study, which includes the approaches used for spectral illuminant
compensation. Our methodology is general purpose, however
for the sake of our experiments we focus on a simple algorithm
for spectral recovery, and on a sensor-independent algorithm for
AWB.

We divide the methodology into three subsections: Scene
Illuminant Estimation, Spectral Super Resolution, and Weighted
Spectral Color Correction (W-SCC).

Scene Illuminant Estimation
We consider two different inputs for AWB estimation. The

first input corresponds to the ground truth illuminant, which rep-
resents the color recorded by the camera when the illuminant il-
luminates a perfect white surface. The second input corresponds
to the actual illuminant estimate obtained using an AWB method.
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Figure 1. Neural architecture of the Multi-Layer Perceptron developed for RAW-RGB illuminant estimation, with varying types of input. The numbers reported

in the blocks represent the data cardinality.

Many AWB methods exist in the state of the art, e.g. [8, 9, 10, 11].
To test the effectiveness of our approach, in this work we use a
sensor-independent AWB method [12].

We investigate the joint estimation of illuminant spectra us-
ing both the AWB estimate and the illuminant estimate provided
by the Ambient Multispectral Sensor (AMS) available on the cho-
sen smartphone. We leverage a Multi-Layer Perceptron (MLP)
model illustrated in Figure 1 for illuminant estimation from AMS
(8 input values) and AWB+AMS (11=8+3 input values) inputs.

Every hidden layer is followed by a Rectifying Linear Unit
(ReLU) activation function. The loss is based on the recovery
angular error [13] between estimated illuminant V = (vR,vG,vB)
and ground truth illuminant U = (uR,uG,uB):

errrec = arccos
(

U ·V
|U ||V |
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Spectral Super Resolution
In the first task, referred to as Spectral Super Resolution,

we focus on the recovery of spectral illuminant information from
RGB illuminant information. Many different methods for spec-
tral super resolution have been proposed in the state of the
art [14], ranging from single-pixel reconstruction methods e.g.
[15, 16, 17, 18], to full image deep learning-based methods e.g.
[12].

In this paper, to prove the effectiveness of the proposed
weighted spectral color correction, we employ the pseudo-inverse
method [19], which is one of the simplest and most commonly
used methods for spectral recovery [20, 21]. This is chosen to
prove the effectiveness of our method, since it is general pur-
pose and does not depend on the specific spectral super resolution
method used.

Weighted Spectral Color Correction (W-SCC)
Having recovered the spectral information for both the scene

pixels and the illuminant, we can use the Chromatic Adaptation
Transform by Spectral Reconstruction (CAT-SR) [7] to recover
the pixel reflectances to be virtually illuminated with the target
illuminant. Using the CAT-SR as it is can lead to sub-optimal re-
sults, as we have to consider that we have two possible sources
of error, namely the errors in the estimation of the scene illumi-
nant (regardless of the method used) and the errors in the spec-
tral super-resolution. To overcome these limitations we intro-
duce the Weighted Spectral Color Correction (W-SCC), that in-

volves the optimisation of a per-wavelength weight matrix, de-
noted W (λ ), which is fixed for all illuminants and input images.
The weight matrix is multiplied by the inverse of the spectral illu-
minant ILL(λ ), as shown in equation (1):

rout(λ ) =
W (λ )

ILL(λ )
rin(λ ) (2)

We optimize the 31 values of the weight matrix W (λ ) us-
ing the average ∆E94 error as the target, but other color difference
metrics could be used. The optimization process follows a grow-
ing approach, starting with the estimation of three equally spaced
weights and gradually obtaining the remaining weights through
linear interpolation. This iterative optimization is repeated multi-
ple times, estimating 5, 7, 15, and finally all the 31 weights.

Experiments
In this section, we provide details about the experimental

setup used for evaluating the performance of the proposed ap-
proaches. We also present and analyze the numerical results ob-
tained from the experiments.

Experimental Setup
For our experiments, we used an internal dataset consisting

of 100 synthetic spectral images, whose acquisition is simulated
using the transmittance information of a Huawei P50 smarpthone
camera, illuminated by sampling 62 illuminants from several
classes (fluorescent, LED, CIE-D series, CIE-A series).

These have been generated using a dataset generation
pipeline [22] that uses RAW or sRGB images as a source for the
imaged content, and reflectance datasets as a source for spectral
reflectance information. The original images were sourced from
the INTEL-TAU dataset [23], and the reflectance data from the
Ridiqulous dataset [24]. In the experiments the target illuminant
considered is the CIE standard illuminant E.

Numerical Results and Analysis
We analyze the error results using several ∆E94 statistics and

report them in Table 1. The illuminant estimates considered in the
experiments include ground truth (both trichromatic and spectral),
AWB, AMS, and AMS+AWB.

To provide a comparison with traditional trichromatic
pipelines, we compute the ∆E94 values when applying a 3 × 3
color correction matrix along with the classical diagonal Von



Table 1. Colorimetric errors in terms of ∆E94 units using different illuminant correction strategies: traditional trichromatic pipeline
with diagonal Von Kries correction (rows 1 to 4), spectral illuminant correction with CAT-SR [7] (rows 5 to 9), and Weighted Spectral
Color Correction (W-SCC, rows 10 to 14). Results are obtained by using illuminant estimates coming from four different methods:
ground truth (both trichromatic or spectral), AWB, AMS and AMS+AWB.

ID Image Illuminant Correction type MIN AVG MED PRC90 PRC95 PRC99 MAX

1 RAW GT (RAW) diag VK 0.11 2.44 2.18 4.10 4.90 6.61 14.34
2 RAW AWB diag VK 1.20 6.39 6.23 9.17 10.22 11.93 18.41
3 RAW AMS diag VK 0.58 4.87 4.53 7.54 8.28 9.60 16.10
4 RAW AMS+AWB diag VK 0.70 4.68 4.52 7.08 7.90 9.31 15.76

5 PINV GT spectral CAT-SR 0.98 5.91 5.66 8.68 10.16 11.76 19.29
6 PINV GT AWB recovered CAT-SR 0.09 2.90 2.72 4.74 5.49 6.90 15.58
7 PINV AWB recovered CAT-SR 0.83 5.11 4.83 7.87 8.99 10.46 18.00
8 PINV AMS recovered CAT-SR 0.47 4.71 4.29 7.59 8.16 9.35 16.41
9 PINV AMS+AWB recovered CAT-SR 0.51 4.48 4.30 6.92 7.82 8.99 16.37

10 PINV GT spectral W-SCC 0.65 4.35 4.10 6.62 7.76 9.15 16.54
11 PINV GT AWB recovered W-SCC 0.10 2.58 2.38 4.28 5.05 6.60 14.67
12 PINV AWB recovered W-SCC 0.65 4.77 4.52 7.40 8.71 10.50 17.83
13 PINV AMS recovered W-SCC 0.48 3.98 3.82 5.88 6.51 7.98 15.61
14 PINV AMS+AWB recovered W-SCC 0.55 4.03 3.94 6.10 7.04 8.47 16.10

Kries transformation for illuminant correction. The results ob-
tained with the classical pipeline are reported in rows 1 to 4.
Row 1 corresponds to the results obtained when using the ground
truth RGB illuminant, while row 2 corresponds to the results ob-
tained using the RGB illuminant estimate provided by AWB. As
expected, the best result is achieved when the ground truth illu-
minant is used, representing the ideal situation. When the AWB-
estimated illuminant is used, the classical pipeline yields an aver-
age error of 6.39 units.

The spectral illuminant correction [7] and weighted spectral
illuminant correction are presented in rows 5 to 9 and rows 10 to
14, respectively.

Upon analyzing the results, we observe that the weighted
spectral color correction (W-SCC) consistently outperforms the
traditional trichromatic pipeline and the plain spectral illuminant
correction approach. W-SCC achieves superior performance in
terms of ∆E94 error for different illuminant estimates, demonstrat-
ing the effectiveness of the weight optimization technique.

By incorporating the AMS data into the joint estimation
process, we observe a reduction in error for both the traditional
trichromatic pipeline and the spectral approach. Table 1 reports
the average errors obtained by the traditional trichromatic pipeline
(rows 3 and 4) and the spectral illuminant correction (rows 8 and
9) when using the AMS estimate. We can observe that the spec-
tral illuminant correction achieves the best result, surpassing the
performance of the traditional pipeline.

The use of the weighted spectral illuminant correction tech-
nique yields improved results compared to the plain spectral illu-
minant correction approach. The average ∆E94 errors obtained
with W-SCC for different illuminant estimates are reported in
rows 12 to 14. Notably, W-SCC achieves an average error of 4.77
when the illuminant estimated by AWB is used (row 12), 3.98
when the illuminant is estimated with AMS (row 13), and 4.03
when the illuminant is jointly estimated by AMS and AWB (row
14).

Figure 2 provides a graphical representation of the colori-

metric errors using different illuminant correction strategies re-
ported in Table 1. The red lines represent the traditional trichro-
matic pipeline with diagonal Von Kries correction, the blue lines
represent the spectral illuminant correction, and the green lines
represent the weighted spectral illuminant correction. From the
plots, it is evident that the CAT-W approach achieves the best per-
formance across all the considered error statistics. Notably, CAT-
W does not seem to benefit significantly from the joint illuminant
estimate obtained by AMS+AWB, as it performs best with the il-
luminant estimate provided by AMS alone. On the other hand,
when using the plain CAT-SR approach, the best results are ob-
tained with the joint illuminant estimate by AMS+AWB.

Overall, the experimental results validate the effectiveness
and superiority of the proposed approaches, particularly the
weighted spectral color correction (W-SCC) technique. The W-
SCC method demonstrates improved accuracy in spectral illumi-
nant compensation, showcasing its potential for various industrial
applications requiring precise color analysis and interpretation.

Conclusions
In conclusion, we presented innovative approaches for spec-

tral illuminant compensation in smartphone imaging systems.
The proposed methods, including Spectral Super Resolution
and Weighted Spectral Color Correction (W-SCC), demonstrated
improved color accuracy compared to traditional trichromatic
pipelines based on diagonal Von Kries correction. The proposed
W-SCC technique, in particular, showcased superior performance
by incorporating per-wavelength weight optimization. These ad-
vancements have significant implications for applications such
as color analysis, computer vision, and image processing. Fu-
ture research can focus on exploring additional optimization tech-
niques and incorporating advanced machine learning algorithms
to further enhance spectral illuminant compensation in smart-
phone imaging systems. Further improvements can be envisioned
by considering the availability and future development of ad-
vanced methods for spectral recovery and for automatic white bal-
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Figure 2. Graphical representation of the colorimetric errors in terms of ∆E94 units using different illuminant correction strategies: traditional trichromatic

pipeline with diagonal Von Kries correction (red lines with circle marker), spectral illuminant correction [7] (blue lines with triangle marker), and weighted spectral

illuminant correction (green lines with square marker).



ancing. Finally, additional tests will be conducted on real spectral
images.
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