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Abstract 
The CIE LAB color space was established by color scientists to be 
approximately perceptually uniform. The Y ′CBCR color space is 
widely assumed by video engineers to be approximately perceptu‑
ally uniform. However, these two color spaces have quite different 
transforms from tristimuli (radiometric) coordinates; they clearly 
cannot have the same perceptual performance. 

It is instructive to ask: Where in color space is Y ′CBCR 
quantization the worst, when evaluated in terms of LAB? And, 
conversely, where in color space does LAB quantize most coarsely, 
when evaluated in Euclidean Y ′CBCR difference? 

The Jacobian corresponding to a color coordinate in 3‑space 
is a 3 × 3 matrix of partial derivatives. The determinant of that 
matrix is analogous to volume. We compute numerical Jacobian 
determinants to explore how unit LAB volumes at sample points 
spanning a target color space map to volumes in Y ′CBCR. Where 
that volume is quite large, we expect poor perceptual performance 
of Y ′CBCR. Where that volume is quite small, Y ′CBCR is over‑
quantizing, and may have poor codeword utilization – but in such 
regions it’s reasonable to suspect the performance of LAB. 

We present “heat maps” that visualize where Y ′CBCR per‑
forms poorly compared to LAB (and vice versa). 

Background 
Helmholtz, Schrödinger, Stiles, MacAdam and others explored the 
mapping from radiometric spaces to perceptually uniform spaces 
using “line elements.” MacAdam used the line element concept to 
establish his colour difference ellipsoids – or, when projected to 
two dimensions, ellipses. In the classic book by Wyszecki & Stiles 
[5, pp. 654 – 689], the last section (8.4), comprising fully 5% of the 
body text of the book, is devoted to line elements. 

Line elements are usually formulated to establish an analytic 
mapping from a radiometric space to a perceptual space. Here, 
we have a more modest goal: We seek to compare spaces that are 
intended to be roughly perceptual uniform to begin with, and we 
analyze color spaces numerically instead of analytically. 

Since its standardization by CIE in 1976, LAB has been 
presumed to be perceptually uniform – that is, unit Euclidean 
distance in LAB coordinates approximates a just noticeable 
difference (JND), or equivalently, a just unnoticeable difference. 

Since the standardization of color television in 1953, analog 
luma and chroma component signals [Y′, U, V] have been pre‑
sumed to be perceptually uniform, based upon the observation 
that analog noise is approximately equally distributed throughout 
color space. In modern times, digital luma/chroma components 
[Y′, CB, CR] have been presumed to be perceptually uniform, 
where quantization error takes the place of analog noise. In eight‑
bit digital video components, unit difference is commonly taken 
to approximate one JND. Ten‑bit components were standardized, 
and are now widely used. Ten‑bit components are assumed to have 
performance somewhat better than one JND for a unit increment in 
any component. Ten‑bit components are used to minimize accumu‑
lation of error from cascaded processing and compression/decom‑
pression steps. Details are found in Poynton’s text [2]. 

A long‑standing question of the present authors is this: If 
color scientists consider LAB representation to be roughly percep‑
tually uniform, and video engineers consider eight‑bit Y ′CBCR 
to be roughly perceptually uniform, how do those two schemes 
compare? To elaborate: At what colors in Y ′CBCR space does unit 
increment in any of the three coordinates Y ′CBCR produce LAB 
∆E that is significantly larger than unity? That condition would 
indicate a region in Y ′CBCR that is likely to exhibit quantization 
problems. Conversely, at what colors in Y ′CBCR space does unit 
increment in any of the three coordinates produce and ∆E that is 
significantly smaller than unity? That condition would indicate 
a region in Y ′CBCR that is over‑quantized; Y ′CBCR space would 
be wasteful of coding values in any such region. 

We analyze Y ′CBCR; however, with suitable scaling, R′G′B′ 
(eg, sRGB) would yield identical results, subject only to our dis‑
crete approximations. The mapping from R′G′B′ to Y ′CBCR is an 
affine transform, and for Y ′CBCR scaled [0…1, ±1, ±1], the unit 
volume of R′G′B′ is preserved in Y ′CBCR. Our choice of Y ′CBCR 
allows more intuitive visualizations in chroma planes. 

In this work we use Y ′CBCR for HD as standardized in 
BT.709/BT.1886. We limit ourselves to color values in the range 
from black to diffuse white. We exclude color values above dif‑
fuse white, such as colors that might arise from direct light sources 
and specular highlights. Representation of color values above the 
portrayal of diffuse white – perhaps 3 or 5 times higher – is the 
distinguishing feature of high dynamic range (HDR). However, we 
exclude these values because applications of HDR do not typically 
demand high accuracy for colors outside the representation of dif‑
fusely reflecting surfaces. Furthermore, in imaging, specular high‑
lights and direct light sources in the image typically occupy small 
areas (or equivalently, have small angular subtense), and so are not 
expected to be critical in terms of perceptual uniformity. 

Implementation 
In this section, we describe the algorithm to compute the Jacobian 
determinants. A summary of the algorithm is presented in Table 1. 

We start by choosing a representative color space: R′G′B′ with 
BT.709/BT.1886 primaries, BT.1886 EOTF, D65 white, and peak 
luminance of 320 cd · m‑2 (typical of consumer television view‑
ing or office computer monitor use). We analyze SDR, where peak 
white is assumed equivalent to the portrayal of diffuse white. The 
gamut volume of this R′G′B′ space is unity. 

A prerequisite to computing our volume elements is to com‑
pute the gamut volume of each of the two spaces to be compared. 
These gamut volumes will be used later to normalize our volume 
elements. The volume ratio normalization accounts for corre‑
spondence of the same set of color samples in both perceptual 
color representations. We compute gamut volume in the manner 
of the Dolby white paper [1]; details of the scheme are discussed 
by Poynton and his colleagues [4]. We choose 113 (1331) sample 
points distributed throughout R′G′B′ space using uniform intervals 
of each or R′, G′, and B′ across the range of signal values 0 to 1 
according to the inverse-EOTF of BT.1886. 
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We seek to develop the Jacobian determinant ratio of two 
color spaces to be compared, as a function of several hundred or 
several thousand sample colors perceptually distributed within the 
reference R′G′B′ color space. In principle, we could densely sample 
R′G′B′ space; an advantage of that approach is that the R′G′B′ 
sample points are – by construction – within gamut. However, that 
approach would require calculation covering 3D space. We chose 
a different, 2.5D approach: We compute Jacobian determinant val‑
ues only at L* levels to be visualized. We use seven L* levels; at 
each level, we compute across an 801 × 801 lattice of [a*, b*] coor‑
dinates (that is, at a* and b* increments of 0.25 across the range 
from ‑100 to +100). A disadvantage of this scheme is that gamut 
testing is necessary. At each point, we transform to both of our 
comparison spaces, LAB and Y ′CBCR. 

For each of the two spaces – symbolize them S1 and S2 – 
we compute discrete versions of the Jacobian matrix associated 
with each sample point. We form the discrete approximations by 
offsetting suitable combinations of [±0.5ε, 0, 0], [0, ±0.5ε, 0], and 
[0, 0, ±0.5ε], surrounding each sample point with six nearby points 
offset by a small amount on each of the three axes. We chose ε to be 
2.5 · 10‑5 (0.000250) as a compromise: small enough to avoid out‑
of-gamut excursions, and large enough that floating-point numerical 
errors are insignificant. (We use the expedient of gamut-testing just 
the sample points, not all the cuboid vertices.) 

We then take the determinant of the discretized Jacobian 
matrix, then normalize each of these determinants by the 
appropriate gamut volume, computed earlier. These scaled 
determinants approximate the volumes associated with a putative 
JND – think of each volume element as a cuboid, or as an 
ellipsoid – at each sample point of the two spaces. 

We are not interested in the scaled Jacobian determinants per 
se at each sample point, because we wish to make no assumptions 
of what constitutes a JND in either space; we seek only to compare 
the two spaces. What we need is the ratio of is the ratio of color 
coordinate differences that comprise the elements of the Jacobian 
determinant matrix, scaled by the gamut volume of the correspond‑
ing color space. Symbolizing the two color spaces S1 and S2, if the 
ratio of volumes v2 : v1 is 10, then space 1 is underquantized com‑
pared to space 2; its perceptual performance is liable to be poor. If 
the ratio v2 : v1 is 0.1, then space 1 is overquantized compared to 
space 2; its codeword utilization is liable to be poor. 

Visualization 
In Figure 1, we visualize volume ratios mapped in LAB coordinates 
using a set of colorized heat map slices, with the associated color 
indices from 0.25 to 4 on a logarithmic scale. As a convenience in 
interpreting the plots, we indicated (by “stars”) the coordinates of 
primaries and secondaries at L* white value 75 (relative luminance 
about 0.48).  

The test case selected has a peak white and diffuse white lumi‑
nance of 320 cd · m‑2. Since LAB is calculated relative to diffuse 
white and BT.1886 is calculated relative to peak white, Figure 1 is 
independent of the (radiometric) luminance level of 320 cd · m‑2. 
The results shown in Figure 1 are dependent on the ratio of peak 
white to diffuse white. When applying this scaled Jacobian determi‑
nant value visualization to compare other color representations and 
color perception approximations, the specific luminance level of the 
diffuse white or peak white can change the visualization for some 
alternate test cases.

Discussion 
The “core” of the LAB plot for L* 50, 75, and 90 indicates that per‑
ceptual performance of LAB and Y ′CBCR are roughly comparable. 
This is not a trivial conclusion: Normalizing color volumes guar‑
antees that both spaces are comparable in terms of their counts of 
JNDs, but that says nothing about the distribution. 

It is evident at all L* levels, but particularly above L* 10, that 
Y ′CBCR overquantizes compared to LAB at colors where at least 
one primary is near unity. We attribute this behavior to Y ′CBCR 
forming its achromatic (luma) component from a weighted sum of 
nonlinear primary contributions, whereas LAB forms its achromatic 
(L*) component from a nonlinear mapping of weighted tristimuli. 
LAB exhibits constant luminance (CL) behaviour, whereby once 
[L*, a*, b*] components are formed, altering L* does not alter 
the luminance of the decoded XYZ tristimuli. Although Y ′CBCR 
approximates CL behaviour, mathematically it has non-constant 
luminance (NCL) behaviour (also called non-constant luminance 
coding, NCLC), whereby changing CB or CR “in the channel”– for 
example, by colour subsampling – alters decoded luminance. In 
NCL/NCLC systems, the monochrome component is symbolized Y’ 
and called luma to distinguish Y ′CBCR encoding from true CL cod‑
ing. See Poynton [2]. 

At L* of 25 and below, the plots indicate a predominance of 
normalized volume ratios between 0.25 and 0.5: Y ′CBCR under‑
quantizes compared to LAB. 
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Figure 1 L* slice visualization of 
Y ′CBCR compared to LAB. We show 
slices of the [a*, b*] plane at seven 
L* levels: 5, 10, 25, 50, 75, 90, and 
95. Each slice shows a “heat map” 
indexed by Jacobian determinant ratios 
(approximating JND volume ratios) 
ranging from 0.25 to 4 on a logarithmic 
scale. Where the Jacobian determinant 
approaches 0.25, Y ′CBCR perceptual 
performance is poor compared to LAB. 
Where the Jacobian determinant ap‑
proaches 4, Y ′CBCR perceptual perfor‑
mance exceeds that of LAB. 



	 	

Table 1 Algorithm steps are summarized. 

1 Specify the details and constraints of the test case. 

• Example details and constraints include the color triplets for 
black, diffuse white, and peak white.

2 Calculate the scale factor for the Jacobian determinant values. 

• The scale can be the ratio of the color gamut volumes of S1 
and S2 for the test case. 

• A simpler approach is to defer this step and later normalize 
the results for each specific color sample triplet. 

3 Select and construct the color dataset for visualization of the 
resulting scaled Jacobian determinant values. 

• An example color dataset is a slice of L*a*b* volume at 
a specific L* for the test case. 

4 Transform this dataset to tristimuli (XYZ). 

5 Transform this dataset to the 3D coordinate system S1. 

• An example S1 is L*a*b* consistent with your testcase. 

6 Copy this dataset six times and offset each by ±0.5ε in each of 
the three dimensions. 

7 Transform these seven (six plus original) datasets to tristimuli 
(XYZ). 

8 Transform these seven datasets to the 3D coordinate system 
S2. 

• An example S2 is BT.1886 primaries and EOTF and BT.709 
Y ′CBCR weights to form Y ′CBCR. 

9 Calculate three differences (one for each dimension) between 
the ±0.5ε S2 datasets. 

10 Calculate the Jacobian determinant values for each valid color 
triplet using three S2 differences and three S1 ε values. 

• This valid color triplet check applies to 14 sets (seven for S1 
and seven for S2). 

11 Scale the Jacobian determinant values. 

12 Map the scaled Jacobian determinant values to the 
visualization representation (typically either S1 or S2). 

13 Construct the visualization of these scaled Jacobian 
determinant values. 


