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Abstract

A novel technique for visualizing multispectral images is
proposed. Inspired by how prisms work, our method spreads
spectral information over a chromatic noise pattern. This is ac-
complished by populating the pattern with pixels representing
each measurement band at a count proportional to its measured
intensity. The method is advantageous because it allows for
lightweight encoding and visualization of spectral information
while maintaining the color appearance of the stimulus. A four
alternative forced choice (4AFC) experiment was conducted to
validate the method’s information-carrying capacity in display-
ing metameric stimuli of varying colors and spectral basis func-
tions. The scores ranged from 100% to 20% (less than chance
given the 4AFC task), with many conditions falling somewhere
in between at statistically significant intervals. Using this data,
color and texture difference metrics can be evaluated and opti-
mized to predict the legibility of the visualization technique.

Introduction

Billions of years before Newton’s insight into the nature of
color via the prism, our single-celled ancestors experienced sen-
sitivity to light. In the eons that followed the visual system de-
veloped according to survival needs, resulting in spatial and color
sensitivity. By virtue of its construction, color vision begins with
a limited probe of the spectral power distribution (SPD) of stim-
uli, where energy is integrated over three spectral bands and en-
coded as cone excitation values. It follows that identical sets of
three excitation values can be triggered by different SPDs, a phe-
nomenon known as metamerism. While this phenomenon allows
for imaging systems to reproduce the appearance of color stim-
uli without exactly matching spectral distributions, it leaves the
naked eye blind to potentially relevant physical information.

However, objects like prisms and diffraction gratings allow
light decomposition into its spectral components. Taking inspira-
tion from these objects, we propose a method to visually decom-
pose multispectral readings by populating a noise pattern with
pixels representing the individual measurement bands such that
its probability distribution is proportional to the SPD (Figure 1).
The method can be extended to the context of images by ran-
domly selecting an element from this pattern at each pixel lo-
cation, offering the aesthetic benefit of color-dependent texture
(like film grain) and covering up capture and compression arti-
facts (like dithering) while maintaining color appearance. Users
can overlay the patterns at an opacity of their choice for a balance
between image legibility and spectral information visibility.

Psychophysicists have shown that we have some ability to
perceive probability distribution characteristics of noise patterns,
but there is no perfect perceptual metric for predicting the de-
tectability of distribution differences in any domain of visual
stimuli. To aid in this effort, a four alternative forced choice
(4AFC) psychophysical experiment was conducted in which the
legibility of the proposed visualization technique is tested. In
this experiment observers were asked to distinguish between
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Figure 1. The spectral distributions of metameric stimuli can be differenti-
ated using the Noise Prism technique.

metamers rendered with the noise prism technique.
In summary, our contributions are the following:

* A novel method for visualizing multispectral image data
which balances the original input color appearance with the
enriched information

* A novel noise generation technique for adding texture to
images and dithering artifacts

* A methodology for encoding low resolution multispectral

images in a single channel image array

Psychophysical data on the discriminability of color distri-

butions.

In the sections that follow, related work on the use of color
and texture in visualization, multispectral image visualization,
and signal distribution discriminability will be discussed. Next,
the implementation details of the proposed method will be out-
lined. Finally, the psychophysical discrimination experiment will
be described, followed by its results and a discussion on the us-
ability of the method and future work.

Related Work
Color and Texture in Visualization

If a feature of visual appearance can be synthesized, chances
are it has been utilized in a visualization scheme. In particu-
lar, color and texture properties have proven useful for extending
dimensionality in data visualization [10, 14, 16, 30, 32]. How-
ever, due to the non-uniform sensitivity of the visual system in
these domains, their mapping remains an open problem and a
number of psychophysical experiments have been conducted to
characterize the information-carrying capacity of visualization
techniques [26, 27]. In most cases, the visualization community
simply trusts that color models like CIELAB [6] will offer a de-
gree of perceptual uniformity in data mapping that will be toler-
able for their particular application. Urness et al. [29] introduce
color weaving, where instead of blending primary colors which
are mapped to multivariate components, they are randomly dis-
tributed throughout a noise pattern in different frequencies which
are proportional to their magnitude. Later, Hagh-Shenas et al.
[11] compare weaving to blending, and find the former to have a
greater information-carrying capacity.



Multispectral Image Visualization

While the majority of work in multispectral imaging focuses
on the computational analysis of captured material, a number of
works have addressed the topic of visualization. The most di-
rect method for reproducing multispectral data is via the multi-
primary display, for which an extensive review is provided in the
work of Long [20]. These devices aim to allow larger gamuts
to be displayed while avoiding metamerism failures caused by
current wide-color gamut displays with narrow-band primaries.
That said, this technology is in its infancy and its potential to
advance color rendering is open-ended.

Working within the current display ecosystem, many
methodologies for remapping multispectral images for visualiza-
tion have been proposed [13, 18, 25]. In each method, three spec-
tral bands of interest are identified either manually or automati-
cally from contrast information and mapped to primary colors
to render a final image. All of the cited works employ a visu-
alization strategy which would be described by Hagh-Shenas as
color blending, and necessarily stray from the color appearance
of the captured scenes. The authors are not aware of any pre-
vious work applying a color weaving technique to multispectral
visualization.

In summary, the multi-primary display has the strength
of maintaining fidelity in color rendering, while the chan-
nel re-mapping strategy sacrifices color rendering to highlight
application-relevant spectral details through re-appropriation of
the display primaries and color blending. The proposed method
aims to balance this tradeoff by showing spectral details while
maintaining color appearance by using a color-weaving visual-
ization technique.

Signal Distribution Discriminability

The foundational works of Attneave [1] and Barlow [2] sug-
gest that neural structures on the visual pathway are optimized to
accommodate the statistical properties of stimuli to which we are
most commonly exposed (i.e., natural scenes). A thorough re-
view of this concept is provided by Simoncelli & Olshausen [24].
It stands to reason, then, that observers should be sensitive to spe-
cific properties of this distribution. In his work which served as
the foundation for the field of texture synthesis, Julesz [15] shows
that textures can be well approximated simply by matching sta-
tistical properties and identifies limits for the discriminability of
random Markov patterns along these axes. In particular, his find-
ings show that changes in higher-order statistical moments like
skewness and kurtosis are not discriminable in this context, so
long as the mean and variance of the distribution are held con-
stant. However, Pratt et al. [22] showed in later experiments that
with alternative statistical techniques noise patterns could be cre-
ated which are discriminable but differ in skewness alone. This
finding was recently backed by the discovery of neural structures
which are sensitive to changes in skewness [33]. Finally, Canham
et al. demonstrate that shifts in a decorrelated “ortho-kurtosis”
property are visible in the context of luminance distributions of
natural images when all lower order moments are kept the same
[4]. In summary, visual sensitivity to the specific shape of stim-
ulus distributions has been underestimated.

The authors are not aware of a general or domain-specific
metric which predicts signal distribution discriminability. Such
a metric could be useful for optimizing the visibility of relevant
comparisons in the proposed technique. While a number of met-
rics have been proposed to predict color differences, they are not
ideal for use with noise patterns as they make comparisons at the
pixel level. Image quality metrics like VIF [23], SSIM [31], and

FSIM [34] operate over larger spatial contexts, but are heavily
weighted towards deviations in spatial structure, making them
inappropriate for this application.

There exist, however, various information theory based di-
vergence measures like L2 and Kullback-Leibler which have
proven useful for the analysis of signal distributions [7, 3] and
as loss functions for the optimization of image processing meth-
ods. However, they do not predict psychophysical data and their
scores often conflict with one another [28]. A potential alter-
native may be the metrics found in the field of texture analysis,
where all metrics are necessarily tuned to evaluate global differ-
ences in sample distributions [17]. For example, Chubb et al.
[5] suggest taking a weighted sum of the differences in statistical
moments between test and reference stimuli.

Computing Noise Prisms

We begin with the stimulus SPD and its tristimulus value
given an observer spectral sensitivity or color matching function
(CMF). First, the SPD or CMF should be sampled such that both
tables represent congruent wavelength bands. The SPD is nor-
malized such that it sums to one and is scaled by the desired
number of pixels in the noise array. For every wavelength A, the
noise pattern is populated with N pixels of the CMF tristimulus
at A, where N is the value of the normalized SPD at A, and the
array is randomly shuffled.

Once populated, the noise pattern must be mapped to be
reproducible by common displays, as the near-monochromatic
tristimulus values are all out of gamut for traditional 3-primary
displays, according to additive color matching mathematics of
an abridged primary system (demonstrated in Figure 2). To ac-
complish this, the cone excitation responses to the stimulus are
converted to /PT [8] where hue and chroma are well decorre-
lated and accessible by converting chroma channels P and T to
polar coordinates. In this representation, the chroma channel of
the noise pattern is globally scaled until all RGB values are in the
0-1 range. It can be observed that the compressed gamut shown
in Figure 2 maintains the general shape of the spectral locus but
at a reduced scale. In an alternative strategy, users can set the
chroma, intensity, or both channels to equal the input stimulus,
leaving only hue to vary as a function of wavelength A.

Finally, the mean value of the pattern is shifted to the
RGB value of the stimulus in the intended display space using
a channel-wise exponent to ensure all pixels stay in range (as
opposed to an additive offset or a multiplicative scaling which
could push values out of range). Figure 5 shows a comparison
of the proposed power law matching versus an alternative where
the mean value is additively adjusted. It can be observed that
the former strategy better preserves the color appearance of the
Macbeth chart as it requires less gamut compression. The results
of the default strategy described above are applied in Figures 3
and 8, where the method is extended to full-resolution images by
selecting a random pattern element for each pixel location.

A simplified version of the method can be used to generate
single-channel transmission patterns. In this configuration, the
input spectral bands are linearly mapped to code values in the
0-1 range, such that the histogram of the pattern returns the area
normalized spectral power distribution directly. The array can
be encoded in the alpha channel of PNG or TIFF images and al-
lows for a low-resolution multispectral image to be transmitted
and decoded. Figure 4 shows that averaging over the Macbeth re-
flectance set and a range of illumination sources, the Mean Rel-
ative Absolute Error (MRAE [19]) stabilizes at a spatial resolu-
tion of 10 x 10 pixels for a spectral resolution of 78 bands. Since



Figure 2. Displayed in CIEXYZ space with an sSRGB gamut volume, with
red dots, noise pattern elements before gamut mapping, and their resulting
position after gamut mapping and matching the mean RGB value of the
stimulus (gray Macbeth patch) with blue dots. It can be seen that the shape
of the spectral locus is roughly preserved, but is compressed to fit within the
monitor gamut.

observers’ contrast sensitivity will be highest for luminance dis-
tributions, this rendering also has the potential to be useful for
visualization. However, it does not maintain the appearance of
the input stimulus. For example, it will have the effect of bright-
ening red image regions and darkening blue regions.

Methodology
Participants

25 students and staff between the ages of 21 and 50 from
York University participated in the experiment. Each observer
was verified to have normal color vision with an Ishihara color
deficiency test. They received a small gift as an incentive for
their participation.

Apparatus

The experiment employed a 2014 iMac as a computing plat-
form and display, running software coded in MATLAB using the
Psychtoolbox [21]. The software managed the cadence of the
experiment, displaying stimuli, querying the input device, and
saving participant performance data.

The display output was measured for primary colors and
white at 16 drive values with a PhotoResearch PR-655 spec-
trophotometer to verify additivity and consistency across color
regions. The display’s gamma function and primary values were
derived from the measurements to accurately represent noise pat-
tern colorimetry. The experiment was conducted in a dark en-
vironment for ease of repeatability. Observers’ input responses
were submitted on a standard QWERTY keyboard.

Stimuli

Observers were presented with four noise prism patterns
corresponding to the same patch reflectance. Each pattern sub-
tended two degrees of visual angle at the display’s native reso-
Iution. Three out of the four patterns were generated with the
same illumination source, while the fourth was generated with a
metameric alternative. The patch reflectances were a subset of X-
Rite Macbeth color checker patches representing a range of hue,
saturation, and brightness levels. While the number of patches

(a)

(b)

Figure 3. The MetaCow set [9] is a multispectral image where the front and
back half of each cow have differing reflectance SPDs. (a) Shows the set
rendered under a D65 light source, where both sides are metamers, while
(b) is the noise prism output. It can be observed that distributions subtly but
visibly differ between the front and back ends of each cow.

used in the experiment was limited due to time constraints, the
method results on the full set of Macbeth reflectances are shown
in Figure 5. The light sources included the CIE D65 “daylight”
standard and measured SPDs from CRT, OLED, and two LED
devices which are shown in Figure 6. Display spectra were cho-
sen since their primaries could be conveniently re-scaled on a
patch-by-patch basis to produce the same CIEXYZ values as the
D65 illumination case, rendering all stimuli for the same patch
reflectance as metameric matches. Given these SPDs, the stimuli
are computed using the noise prism methodology described in
the previous section in the configuration where the chroma chan-
nel is fixed to equal the stimulus.
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Figure 4. Spectral reconstruction Mean Relative Absolute Error (MRAE),
averaged over Macbeth reflectances illuminated by an assortment of
sources, as a function of transmission pattern size (N x N) for various spec-
tral resolution levels.
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Figure 5. (a) Noise prism rendering of Macbeth reflectances with the pro-
posed method, (b) noise prism rendering with additive appearance match-
ing, (c) single channel transmission pattern, where spectral samples are
mapped to luminance levels, (d) intensity as a function of wavelength re-
flectance plots.
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Figure 6. llluminant spectral power distributions measured from 380-780
nanometers. From left to right, the illuminants are D65, CRT, LED, OLED,
and an alternative LED.

Procedure

At the start of each session the experimental instructions
were read aloud, detailing the cadence of the experiment and task
(i.e., to select the patch that is different from the other three). Be-
fore starting the body of the experiment, the observers practiced
using the interface with 5 random trials. For the main experi-
ment, the conditions were presented to observers in a randomized
order. Patches were flashed for 1 s, then disappeared to prevent
delays due to overthinking. The next trial began immediately af-
ter participants submitted their responses. Most observers com-
pleted the experiment in 15 minutes or less.

Design
The experiment employed an 8 x 10 within-subjects design
with the following independent variables and levels:

8 patch reflectances (dark skin, light skin, blue sky, foliage,
purplish blue, moderate red, green, and blue)

* 10 illumination metamer pairs (all unique combinations of
Figure 6)

The dependent variable was discrimination accuracy. The
total number of trials was 8000 ( = 25 participants X 8 x 10 x 4
repeats)

Results

The overall mean for discrimination accuracy was 69%. The
effects of both patch reflectance (F779 = 25.7, p < .001) and il-
lumination metamer pair (Fg 79 = 382.82, p < .001) were sig-
nificant. Across conditions, the average observer results ranged
from 20% to 100% accuracy with a standard deviation of roughly
8%. The mean values for different patch reflectance and illu-
mination pair conditions are plotted in Figure 7. Intervals rep-
resent the standard error for each measurement. It can be ob-
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reflectance and (b) illumination metamer pair. Error bars represent standard
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error.

served that these scarcely overlap between adjacent ranked con-
ditions. The plots also show that the illumination pair condition
had a greater effect on discrimination accuracy when compared
to patch reflectance, with some conditions at almost 100% ac-
curacy across all observers and patch reflectances and others ap-
proaching chance (25% accuracy). Table 1 breaks down the re-
sults per condition.

Discussion

A multispectral visualization technique is proposed and its
capability to render metamers such that they can be discriminated
is demonstrated. In particular, broadband SPDs like D65 appear
different from multi-modal narrow band distributions. Figure 3
shows the method applied to a full-resolution metameric scene.

The application of multispectral architectural renderings is
proposed and demonstrated in Figure 8. While the interpreta-
tion of these visualizations may take practice, the resulting color
noise and transmission patterns provide a continuous map of the
light spectrum at different regions of the scene, which would not
be possible with one-dimensional graphs of the spectral readings
or a standard RGB rendering. The disparities between the noise
prism and RGB renderings indicate that the visualization may
aid in understanding color appearance in scenes with complex
illumination conditions.

As a first step towards validating the visualization tech-
nique, a 4AFC experiment was conducted to gauge discrim-
inability between different color distributions. The distribu-
tions were generated in the application-relevant scenario of dif-
ferentiating between identical patches which are illuminated by
metameric light sources. The accuracy scores ranged from
clearly visible (100%) to clearly invisible (20%) with many test
conditions in between. This property and the confidence inter-
vals between conditions make this experimental data useful for
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Figure 8. (a) Original RGB rendering of the bathroom scene from Hao & Funt [12] along with (b) color and (c) transmission pattern renderings of multispectral
EXR. The visualizations allow for a spatially continuous assessment of the spectral content of the scene. The noise prism renderings reveal the spatial
distribution of the mixed illumination in a way that is not obviously apparent in the RGB version (e.g., the reflection of the floor molding on the base of the sink
can be seen in the middle image, and the shadow boundaries of the sink can be better seen on the far right.)

evaluating or optimizing metrics to predict distribution differ-
ence visibility. This is a promising direction for future work.
Also, further psychophysical experimentation, varying presenta-
tion conditions like the power spectrum of the patterns, temporal
presentation conditions, and testing with image data would be of
interest.
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