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Abstract 
When describing “how many colors” can be represented 

or reproduced by a given system or device, volume (or gamut 
volume) is often used. While it has a rightful place and is a valid 
way to describe a range of colors, it is an incomplete and 
indirect answer to the original “how many?” question. In this 
paper a first principles based approach is applied to this 
question, starting with delimiting the validity of any possible 
answer by being explicit about assumptions about domain 
(dimensionality, encoding bit-depth, coordinate system or 
color space. etc.). Furthermore, no real-world data exists 
without a reference to a measurement device, which in turn 
has to consider sources of noise: physical surfaces whose color 
or spectral measurements differ by less than the level of noise 
of that device, cannot be considered as distinct. These 
assumptions directly affect possible answers to the initial 
question of how many colors or color stimulus properties there 
are. Starting from reflectances, their quantization and 
measurement noise as well as colorimetry are analysed in a 
variety of color spaces and the concepts of cardinality and 
colorimetric errors are used. The result is not a single answer 
but both an exploration of the effects of the assumptions and a 
characterization of their dependence. For example, results 
show how quantization and measurement error can have a 
significantly larger impact than may be intuited, likewise, the 
same analysis in CIE LAB, CIE CAM16 and CAM16-UCS yields 
substantially different answers (and may be applicable in 
different contexts), which also highlights current limitations of 
these spaces and color difference metrics. Additionally, a 
cardinality analysis can also be performed in a biological 
domain of retinal responses, which bridges the physical and 
psychophysical domains. As will be shown, precise answers can 
be given under specific and explicit assumptions, but in a 
general context, the answer always has to be “it depends”. 

Introduction 
Questions about how many somethings there are have 

occupied the minds of humans since prehistoric times. From 
counting lunar phases 42 000 years ago in South Africa’s 
Lebombo mountains by carving notches into bones [1], via the 
elaborate accounting records of ancient Egyptians [2], to Peter 
Drucker’s 20th century mantra that, “if you can’t measure it, 
you can’t manage it,” questions about quantity have been 
constitutive of the human condition. 

Looking at a narrow slice of this question, the present 
paper will ask how many “somethings” there are that relate to 
color. The obvious thing here is to jump straight to asking: 
“how many colors are there?” – and the paper will eventually 
arrive at it, but it may prove illuminating to work towards it 
instead. 

As has been shown previously by Morovic et al. [3], the 
question of how many colors there are is elusive, both because 
of the myriad combinations of objects, viewing and lighting 
environments and observers and observer states, and because 
of the constraints of the ground truth psychophysical data on 
which colorimetry and color appearance models are based. 

Such constraints notwithstanding, there are broader questions 
to ask that were not considered previously. 

Before proceeding further, it is also worth spelling out the 
implicit qualifier that the question about how many colors 
there are contains, which is that these colors need to be distinct 
from each other. In other words, a set of colors contains only 
distinct colors if for each color in the set there is no other color 
that looks the same. 

Starting from colors, or more specifically the color 
attributes of visual percepts (where percepts are the result of 
the visual perception of stimuli), it can be asked how best to 
quantify their number. The question can further be extended 
to the source of those percepts, to being about quantities of 
biological states in the human visual system and then quantities 
of stimuli, i.e., that which the human visual system perceives. 
It then becomes: “how many stimuli are there that result in 
color percepts?” or “how many biological states are there in the 
human visual pathway that result in color percepts?” This 
perspective also allows for an umbrella question to be formed 
that combines stimuli, biological states and percepts, since 
percepts can be thought of also as properties of biological states 
and stimuli in the sense that they correspond to them in 
function of an observer. The end result then becomes an 
enquiry into color stimulus properties – both direct and 
observer-mediated. 

Furthermore, these questions ought to be asked not only 
in some abstract, continuous, theoretical domain, but in the 
context of physical systems that are prone to variation and 
noise and where quantities about them are established via 
measurement, which is itself subject to those same fluctuations 
and whose results are also expressed with finite precision. 

Following some groundwork on cardinality, which will let 
us ask not only questions about “how many” somethings there 
are but also about what kind of infinity applies in continuous 
cases, the paper will proceed from stimulus, via biological state 
towards percept, and explore the impact both of domain and of 
physical constraints on the question of how many distinct color 
stimulus properties there are. 

Cardinality 
Cardinality is defined as the measure of the size of a set or 

the number of elements in a set. While it traces its roots to 
ancient Babylonian and Egyptian mathematics where systems 
of enumeration were used to count quantities of objects, it was 
Euclid who introduced the concept of correspondence, where 
the size of a set is expressed as the number of elements that can 
be put in correspondence with another set. More recently, 
Georg Cantor extended this theory to countably and 
uncountably infinite sets and formalized it into what today is 
commonly used in set theory to talk about cardinality [24].  

For finite countable sets, cardinality simply refers to the 
number of elements in that set. For example, the set of A = {0, 
1, 2, 3} is a countably finite set whose cardinality, denoted as 
|A|, is 4 as it has 4 elements. Another way to think about this is 
that this set has a cardinality of 4 because its members can be 
paired up (put in one-to-one correspondence) with the 
members of any other set that also has the same cardinality of 
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4. For sets that have infinite elements, cardinality is also 
expressed in terms of correspondence and Cantor defines some 
classes of infinities, such as ℵ₀ (aleph-0) representing the 
cardinality of all natural numbers |ℕ|, also referred to as 
countably infinite sets. Any other set for which a 
correspondence (a one-to-one mapping) between the natural 
numbers ℕ and itself exists, also has cardinality ℵ₀ (such as the 
set of all integers, the set of all multiples of 42, the set of all 
rational numbers, etc.). Sets of numbers such as the real 
numbers ℝ	 or	 irrational	 numbers	 ℙ	 then	 have	 a	 higher	
cardinality	 since	 there	 is	 no	 one-to-one	mapping	 to	ℕ,	 this	
cardinality	is	2ℵ0	denoted	ℵ1.	

These	uncountably	infinite	sets	furthermore	break	some	
of	 the	 intuitions	 from	 countably	 finite	 sets,	 so	 that	 the	
cardinality	of	the	real	interval	[0,	1]	is	the	same	as	that	of	the	
entire	set	of	real	numbers	ℝ,	or	even	its	higher	dimensional	
Euclidean	spaces,	by	virtue	of	a	one-to-one	mapping	from	[0,	
1]	to	ℝ	to	ℝn	(see	Cantors’	diagonalization	proof	[24]).	

While the concept of cardinality formalizes the notion of 
“how many” of something there are in a set, another 
complementary measure to use is that of size or volume. For 
example, the volume of the [0, 1] hypercube in arbitrary 
dimensions is always 1 (the length of a segment of [0, 1] is 1, 
the area of a square of side 1 is 1, the volume of a cube of side 1 
is 1, etc.), while its cardinality is	the	same	as	that	of	ℝ,	namely	
ℵ1.	Instead,	for	countably	finite	sets	this	relationship	breaks.	
E.g.,	for	a	quantization	in	the	aforementioned	hypercube	(e.g.,	
instead	of	continuous	over	ℝ,	8-bit	over	integers),	the	set	of	
all	 vectors	will	be	a	 finite	number	of	elements	 that	directly	
depends	on	the	quantization,	while	still	having	a	volume	of	1.	

	

 
Figure 1. A square of side one at three quantization levels – volume 
remains the same (=1) but the cardinality changes (from uncountably 
infinite to 49 to 16). 

Fig.	1	shows	such	an	example	where	the	three	squares	all	
have	 volume	 (area)	 1.0,	 but	 the	 first	 square	 (assuming	 a	
representation	in	ℝ2)	has	cardinality	ℵ1	(same	as	ℝ)	while	the	
second	has	cardinality	49	(there	are	49	unique	coordinates)	
and	the	last	cardinality	16	(there	are	16	unique	coordinates).	

Spectral domain  
Moving	 on	 to	 the	 domain	 of	 color stimulus properties, 

these can be described in physical terms in the spectral domain 
by means of spectral reflectances or spectral power 
distributions, which give rise to color percepts. Without loss of 
generality, the spectral domain of Lambertian surfaces will be 
used here, assuming reflectances are constrained between 0% 
and 100% – no less than no light and no more than all light is 
reflected – (or the [0.0, 1.0] interval). 

In theory, reflectances can be considered as arbitrary 
functions defined over a continuous sub-interval of ℝ	 (e.g.	
some	range	of	visible	wavelengths)	whose	image,	the	values	
of	the	functions,	also	fall	into	a	continuous	sub-interval	of	ℝ	
(e.g.	 [0,	 1]	 for	 Lambertian	 surfaces).	 The	 cardinality	 of	 this	

case	 of	all	 possible	 continuous	 reflectances	 is	 2ℵ1	 (often	
referred	to	as	ℵ2).	

In practice, reflectances are represented in some higher-
dimensional discrete space such as e.g. d=8, 16, 24 or 31 spectral 
samples on the 400nm to 700nm interval (40, 20, 12.5 or 10nm 
steps). This domain, also referred to as the Object Color Solid 
(OCS) [26], can therefore be considered a hypercube in n 
dimensions of side 1.0 and as mentioned earlier, has a volume 
of 1.0 and cardinality of ℵ1,	independent	of	n.		

However,	to	answer	the	question	of	how	many	spectral	
reflectances	there	are,	continuity	is	never	the	case	in	the	real	
world,	since	all	reflectances	are	the	result	of	physical	object	
properties	 measured	 using	 devices	 that	 operate	 at	 a	
particular	spectral	sampling	and	represent	reflectances	at	a	
particular	bit	depth,	even	postponing	the	topic	of	variability	
and	noise	for	a	moment.	

So,	for	a	given	dimension	n,	the	volume	of	a	hypercube	
(the	set	of	possible	reflectance	stimuli)	S,	as	mentioned	before	
is	defined	as:	

𝑉𝑜𝑙(𝑆) = 	 𝑟! (1) 
And	for	r	=	1.0	(Lambertian	surfaces)	Vol	is	equal	to	1.0,	

and	 is	 independent	of	n	 (the	dimensionality	of	 the	 spectral	
samples).	Introducing	quantization,	let	smp	be	the	number	of	
unique	samples	that	can	be	encoded	per	dimension,	then	the	
cardinality	 of	 unique	 stimuli	 at	 a	 given	 bit-depth	 can	 be	
written	as:	

|𝑆| = 𝑠𝑚𝑝! (2) 
Where	smp	 in	 the	case	of	considering	bit-depth	can	be	

expressed	as	2b,	where	b	is	the	number	of	bits,	such	that	for	
an	 8-bit	 representation	 256	 samples	 per	 dimension	 can	 be	
represented	 and	 the	 cardinality	 of	 an	 8-bit	 encoded	 31	
sampled	spectral	domain	becomes:	

|𝑆| = 2"! =	2#$% = 4.52𝑒74 (3) 
While	this	seems	an	unimaginably	large	number,	it	needs	

to	be	 compared	with	 the	 cardinality	of	 the	 continuous	 case	
(ℵ1)	which	is	uncountably	infinite.	Furthermore,	bit-depth	(at	
a	 fixed	sampling	representation)	 is	exponentially	 related	 to	
the	number	of	unique	reflectances	that	can	be	represented,	as	
Tab.	 1	 shows	 (with	 highlighted	 8,	 10,	 12	 and	 16bit	
representations),	also	showing	the	orders	of	magnitude	jump	
from	 8bits	 (e74)	 to	 10	 (e93),	 12	 (e111),	 16	 (e149)	 and	
beyond:	 note	 that	 there	 are	 1075	 times	 more	 unique	
reflectances	in	a	16-bit	than	in	an	8-bit	encoding.	

Table 1: Unique reflectances as a function of bit-depth (in a 
31D spectral sampling domain) 

Bits Samples / dim # of unique 
reflectances 

8 256 4.52E+74 
9 512 9.71E+83 
10 1024 2.09E+93 
11 2048 4.48E+102 
12 4096 9.62E+111 
13 8192 2.07E+121 
14 16384 4.44E+130 
15 32768 9.53E+139 
16 65536 2.05E+149 
17 131072 4.39E+158 

1 unit 1 unit 1 unit

1 
un

it



 

 

18 262144 9.43E+167 
19 524288 2.03E+177 
20 1048576 4.35E+186 
21 2097152 9.34E+195 
22 4194304 2.01E+205 
23 8388608 4.31E+214 
24 16777216 9.25E+223 

 
These results already transmit a sense of scale however 

they are not intuitive when it comes to their effect on color 
measurement. So, to express the impact of bit-depth error, a 
random 100K reflectances were generated and quantization 
error evaluated for the same bit-depth as in Tab. 1 but in terms 
of ΔE2000. The approach here is a worst-case analysis where 
uniformly distributed random noise (with μ = 0 and range of -
0.5 to 0.5) scaled by the magnitude of quantization (e.g., ½16 in 
the case of 16-bits) is added to the reference reflectances and 
compared colorimetrically against the reference reflectance. 
Fig. 2 below shows these results and while their magnitude is 
relatively small, as expected, the errors are non-negligible 
(even without taking repeatability or noise into account yet). 
At an 8-bit representation the median quantization error can 
be over 0.1 ΔE2000 and can go as high as 0.35. At 16 bits the 
errors are significantly lower, with a median below 0.05 and a 
maximum of 0.15. 

 
Figure 2. Number of bits per spectral dimension (31) vs the ΔE2000 
statistics of quantization error, over a set of 100K random reflectances. 

Sphere packing 
While the analysis so far has dealt with continuous 

domains or with their per-dimension-quantised 
representations, incorporating the effect of measurement noise 
requires a different kind of approach.  

A way to make the context explicit, in which a cardinality 
question is asked here, is the following. Given a volume in a 
space (e.g., a reflectance space of certain dimensionality) and a 
distinguishability threshold (e.g., a distance below which 
differences cannot be considered meaningful), what is the 
cardinality of the largest set of samples that can be distributed 
across that volume such that the difference between any pair 

of samples is greater than or equal to the distinguishability 
threshold. 

More formally, let S be a point in volume V, T be a 
distinguishability threshold and d(S1, S2) be the minimum 
distance between any two points S1 and S2. Then, the 
cardinality m of the largest set A of points S such that the 
distance between each S and all the other Ss is greater than or 
equal to T can be written as: 

m = max{|A| : ∀S1, S2 ∈ A, S1 ≠ S2 → d(S1, S2) ≥ T} (4) 
 
Finding the set A that maximizes m then corresponds to 

the n-sphere-packing problem in n dimensions [4]. In 2D an n-
sphere is a circle and finding the m-maximizing set A is the 
same as finding the set of circles of radius T/2 that fills an area 
without overlapping, where all circle centers are inside that 
area and where the cardinality of A is maximal. 

In 2D the answer to the m-maximizing arrangement of 
circles is having their centers on a grid of regular hexagons of 
side T (Fig. 3), whose optimality was proved by Lagrange in 
1773 [5]. 

 
Figure 3. Optimal circle packing, showing regular hexagonal grid formed by 
their centers as gray lines. 

A characteristic feature of n-sphere packings is their 
packing density, which refers to the proportion of a space 
enclosed by a set of packing n-spheres. In 2D, for circles, the 
highest packing density is 𝜋/√12, which means that an optimal 
circle packing covers 90.69% of the plane. 

For the purposes of the analysis in this paper, it is useful to 
derive the number of packing n-spheres per unit volume from 
packing density, which can be obtained as follows: 

CU = pd/B (5) 
where CU is the number of packing n-spheres per unit 

volume, pd is packing density and B is the volume of the 
packing n-balls (an n-ball being the space enclosed by an (n-1)-
sphere, e.g., a circle, being a 1-sphere, encloses a 2-ball with a 
certain volume), computed as follows [6]: 

𝐵 =	 &
!
"

'(!")%*
𝑟! (6) 

where r is the n-ball’s radius, n is the number of 
dimensions and Γ is Euler’s gamma function. This is the case 
because packing density is the proportion of a unit space that is 
occupied by a certain packing and dividing it by packing n-ball 
volume gives the number of n-spheres that it takes to occupy 
that unit space proportion. 

The number of packing spheres C at a given packing 
density within a certain volume V then is: 

𝐶 = 𝑉 × 𝐶+ (7) 
During the following analysis, it would be desirable to 

compute the cardinality of packing sphere sets in the typical 
reflectance spaces that are 16 or 31 dimensional (for 20 and 10 
nm samplings of the 400-700 nm range) and in 3 dimensions 
for colorimetry and color appearance. However, since optimal 



 

 

packing densities for 16 and 31 dimensions are unknown, 8 and 
24 dimensions will be used instead as a way to bracket the 16D 
case. Tab. 2 therefore shows the optimal packing densities in 3 
[7], 8 [8] and 24 [9] dimensions alongside n-ball volume and 
the n-balls per unit volume factor obtained from them that will 
be used later. 

Table 2: Optimal packing densities and n-ball volumes 
Dimen–
sions (n) 

Optimal packing 
density (pd) 

n-ball 
volume (B) 

n-balls / unit 
volume (CU) 

3 𝜋
3√2

= 74.05% 4𝜋
3 𝑟$ 

1
4√2𝑟$

 

8 𝜋,

384 = 25.37% 
𝜋,

4! 𝑟
# 

4!
384𝑟# 

24 𝜋%-

12! = 0.19% 
𝜋%-

12! 𝑟
-, 

1
𝑟-, 

Measurement noise 
Any physical measurement device has some level of noise 

due to environmental changes, current fluctuations, sensor 
variability, etc. [28,29] As a result, measuring a surface (in the 
same location under nominally the same conditions) multiple 
times, results in measured reflectances that vary numerically. 
If a device measures the same surface as different reflectances, 
consequently, different physical surfaces whose measurements 
vary to the same degree as this measurement noise cannot be 
distinguished and cannot be considered as different.  

Hence, at a given level of noise, it is not possible to 
distinguish whether two measurements correspond to the same 
surface or to different surfaces. While quantization could be 
analyzed by counting the number of unique stimuli that can be 
represented at a given bit-depth, when it comes to 
measurement noise, the sphere-packing approach described 
above needs to be employed to determine cardinality. 

The level of spectral repeatability noise is not often 
provided by manufacturers; however, to have a sense of its 
magnitude, it can be determined experimentally from multiple 
measurements of the same surfaces. 

Here, a Minolta FD-9 spectrophotometer was used, taking 
4 measurements of the same chart (under the same conditions 
and measured consecutively without moving the chart or 
changing any of the measurement conditions). Computing the 
pairwise differences among the 4 measurements and taking the 
per-wavelength maximum and minimum differences of all 
measured surfaces delimits a noise envelope interval of -1.9 to 
+2.9% in the spectral domain, as shown in Fig. 4. What is 
noteworthy is that these errors are an order of magnitude 
larger than those of, e.g., 8-bit quantization (1/256 = 0.39%). 

As mentioned, the optimal solution of the sphere-packing 
problem is only known for certain dimensions, hence the 
analysis below will use 8 and 24 dimensions as the spectral 
representation. While 8 is unusually low for spectral data, 24 is 
already reasonable as some spectrophotometers measure 16 
spectral samples (400nm to 700nm with 20nm intervals).  

Using noise values from ½16 (a 16-bit representation 
without other noise) to 0.029 (maximum spectral noise from 
the Minolta FD-9 test), the number of n-balls – i.e. uniquely 
distinguishable reflectances in the spectral hypercube’s volume 
of 1.0 – is shown in Fig. 5 both in 8D (blue dots) and 24D (green 
dots). 

 
Figure 4. Spectral noise based on 4 repeated measurements of the same 
physical chart using a Minolta FD-9 spectrophotometer shown as the 
maximum spectral difference for each sample of the four measurements. 

 
Figure 5. Spectral noise based on 4 repeated measurements of the same 
physical chart using a Minolta FD-9 spectrophotometer and corresponding 
cardinality. 

Computing cardinality in terms of n-balls differs from the 
earlier, simpler analysis of quantization where, implicitly, 
hypercube (n-cube) subsampling was used instead of n-balls. In 
considering noise, using n-balls is more	representative since for 
any point in reflectance space, a hyper-sphere encloses all 
possible deviations from the reference value in all directions. A 
hypercube (of the same size as the radius of an n-sphere) 
introduces non-uniformity as is evident also in 3D – e.g., a 
point at the center of a cube varies in its distance to the cube 
surface, while a point at the center of a sphere is equidistant to 
all points on the sphere. 

The values in Fig. 5 show the relative impact of noise on 
the number of n-balls in the reflectance hypercube (shown at 
log-scale). As can be seen this relationship too is exponential 
and even apparently small levels of noise have a dramatic 
effect. As before, these values are not immediately relatable to 
perceptual magnitudes. Fig. 6 therefore shows a similar analysis 
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to Fig. 2, in terms of color differences due to measurement 
noise. In this case, the 53,489-member SOCS set [25] of 
measured reflectances is used, represented at 31 spectral 
samples and evaluated using the same levels of noise as in 
Figure 5, from ½16 to 0.029.  

In each case a noise-scaled uniform random error (as 
before, μ = 0 and range of -0.5 to 0.5) was added to the reference 
reflectance set and its ΔE2000 color difference evaluated vs the 
original (“noise free”) reference. As can be seen here too, even 
apparently low levels of spectral noise (less than 3%), can result 
in substantial colorimetric errors with a median of 0.19 and a 
maximum of 6.5 ΔE2000. 

 
Figure 6. Spectral noise interpreted in ΔE2000 color difference terms 
shown as box-plots for each level of noise. 

 
Figure 7. Spectral noise interpreted in ΔE2000 color difference terms 
shown as CIE LAB plot (L*b* projection) to illustrate the distribution of 
largest errors (above 1.0 ΔE2000) – the values correspond to the errors 
analysed for a 0.029 per wavelength noise level (i.e. largest error). 

The distributions shown in Fig. 6 clearly show a long tail 
(outliers, beyond the inter-quartile range indicated by the box 
and even outside the ‘whiskers’ that correspond to 1.5 times the 
inter-quartile range) and Fig. 7 plots the color distribution of 
the largest errors in CIE LAB space. As can be seen, these 
outliers (where the size of the square markers indicates the 
magnitude of the error – scaled for visualization purposes) lie 
at the bottom of the gamut, meaning they correspond to the 
darker samples, where noise can have the biggest impact. 

There are several limitations to the above analysis. Firstly, 
the measurement noise is considered to be the same at each 
wavelength, which need not be the case and even in the limited 
experimental data shown in Fig. 4, it appears to vary and result 
in higher levels of noise at the longer wavelengths vs the 
shorter ones. On the other hand, the errors shown in Fig. 6 also 

don’t constitute a worst-case scenario but a random sample. 
Further analysis with a wavelength-dependent model and 
more extensive noise modelling can be done in the future. 

Biological domain 
The stimuli whose cardinalities were considered so far are 

the source of the human visual system’s response, triggering 
signals that travel from the retina to the brain’s visual cortex. 
The question of how many “somethings” there are can 
therefore be also asked about the cardinality of biological states 
that are possible in a human observer and that then result a 
variety of color experiences. 

A first attempt at quantifying them can be made by 
considering that the visual system has three color channels, in 
terms of cone responses and then cone-opponent signals that 
travel from the retina’s ganglion cells along the optic nerve. 
Since the cone-opponent signals are the result of additive and 
substrative operations on the output of short- (S), middle- (M) 
and long-wavelength (L) sensitive cones, a cardinality analysis 
can be applied either directly in cone space or in cone-
opponent space, yielding the same results. 

Studies of the visual system’s adaptation behavior [10–12] 
show approximately 1000 distinct signal levels for each of the 
ON and OFF ganglion cell types, which corresponds to a 
combined 2000 signal states for each of the three cone-
opponent channel types, leading to a total of 20003=8x109 signal 
states leaving retinal ganglion cells. 

While this does express the number of possible, distinct 
signal combinations at 2000 levels in a three-channel system, it 
would be an overestimate of biological states leaving retinal 
ganglion cells, due to the overlapping spectral responsitivities 
of the three cone types. Taking the reflectances of the OCS, 
computing LMS cone responses [27] and from there cone-
opponent values in L-M, (L+M)-S and L+M+S channels yields a 
convex volume that can then be intersected with a 8x109 grid 
spanning the full opponent space. The result are 2.09x109 
possible, distinct cone-opponent signals (Fig. 8). 

 

  
Figure 8. (L+M)-S versus L-M (left) and L+M+S versus (L+M)-S (right) 
projections of the Object Color Solid convex hull under D65 in cone-
opponent space. 

Colorimetric and color appearance domain 
The question of cardinality can also be asked in a 

colorimetric domain in terms of sets of samples taken from the 
OCS gamut. Unlike in the spectral case, where sampling from 
a unit n-cube (i.e., n-dimensional hypercube) could be handled 
directly, sampling from a color gamut requires additional 
considerations when done in color spaces that are non-linear 
transformations of reflectance and CIE XYZ. 



 

 

Since transforming the OCS into CIE LAB or CIE CAM16 
does not preserve convexity, its gamut boundary will be 
determined using alpha shapes [13] with an ISO–recommended 
radius of 40 [14]. Because the result is a triangulated surface 
delimiting the OCS gamut, the question of what the largest 
number of spheres is that it can contain is distinct from how 
many spheres can pack a certain volume in 3D. 

Addressing that question directly would involve 
computationally optimizing the placement of spheres inside 
the gamut boundary, which is an expensive optimization 
problem [15] and which yields lower packing densities (of 
around 65%) than those of regular lattices that in 3D can reach 
the theoretical optimum of 𝜋/(3√2)=74%. 

The approach taken here will be to first characterize how 
the positioning of a regular lattice versus a given boundary in 
3D determines the number of enclosed lattice vertices and to 
then use the resulting statistics when approximating the 
maximal cardinality of enclosed color sets. This is done by 
taking a hexagonal close packing (HCP) lattice [4] (Fig. 2) that 
optimally packs in 3D and counting how many of its vertices 
are enclosed per unit volume in boundaries of increasing 
volume (Fig. 9). 

 

 
Figure 9. (top) A HCP cell and (bottom) the OCS under D65 in CIE LAB 
filled with a coarse HCP grid. 

 
Figure 10. HCP n-balls per unit volume range as a function of gamut 
volume. 

Instead of considering a single value per gamut volume, 
Fig. 10 shows a range, which is the result of taking the HCP 
grid and moving it relative to a gamut boundary in all three 

dimensions in four steps over a one unit range, resulting in a 
jiggling that corresponds to the span of one packing sphere. As 
can be seen, at very low gamut volumes (below around 10K 
cubic LAB units) there is considerable variation as a result of 
the relative positioning of the grid versus the gamut. However, 
at gamut volumes above around 250K the full range of values is 
within 1-2% of the minimum CU, with interquartile ranges 
below 1%. For the purposes of the analysis here, the n-balls per 
unit volume count of HCP in 3D will therefore be used to 
obtain sample counts from volume. 

OCS cardinality in CIE LAB 
As with reflectances, here too the effect of measurement 

noise can be taken into account when quantifying the number 
of distinguishable color coordinates that can be distributed 
across the OCS’ volume of 2,267,996 cubic CIE LAB units (Fig. 
11). 

 
Figure 11. The radius=40 alpha hull of the Object Color Solid under D65 
and for the 2° standard observer in CIE LAB. 

Table 3: Cardinality of OCS-packing n-ball sets for different 
degrees of measurement repeatability 

Measurement error  
(95th percentile, 0°/45°) 

Packing n-
ball radius 

Packing n-
ball set 
cardinality 

0 0.5 3,207,431 
0.2 (intra-instrument) 0.7 1,168,888 
1.6 (inter-instrument) 2.1 43,292 
2.2 (inter-vendor) 2.7 20,369 

 
The cardinalities of OCS-packing color sets in Tab. 3 vary 

dramatically, from it being possible to pack the 2M volume 
with over 3M unit spheres that correspond to the implied 
distinguishability of CIE LAB, via a drop to around 1M just as 
a result of a small amount of measurement repeatability and 
further decreasing to tens of thousands when inter-
instrumental differences typical of 0°/45° spectrophotometers 
are considered at a 95% level. In other words, given typical 
differences between spectrophotometers of different vendors, 
only around 20K colors from the OCS can reliably be known to 
be different on the basis of such measurements. 

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

1 10 100 1000 10000 100000 1000000

n-
ba

lls
 / 

un
it 

vo
lu

m
e 

(C
_U

)

Gamut volume in cubic LAB units
Min Q1 Median Q3 Max



 

 

OCS cardinality in CIE CAM16 and CAM16-UCS 
Since CIE LAB coordinates are not the best predictor of 

color, the analysis performed there can also be applied using a 
color appearance model that makes more accurate predictions 
about appearance attributes like lightness, chroma and hue. 
Doing so in CIE CAM16 [16] results in a volume of 2,013,465 
cubic CIE CAM16 units (Fig. 12), which corresponds to 
2,847,470 HCP-packed unit-distance-spaced points. 

 
Figure 12. The radius=40 alpha hull of the Object Color Solid under D65 
and for the 2° standard observer in CIE CAM16. 

As was to be expected, the representations of the OCS in 
these two color spaces give rise to different cardinalities of the 
set of all color space coordinates that are a unit distance away 
from each other and that pack its color gamut boundary. In 
spite of their differences, the two spaces result in comparable 
cardinalities of 2.3M for CIE LAB and 2.0M for CIE CAM16. 
They are essentially answers to the same question though: in a 
space designed to represent individual colors, how many unit-
distance-spaced coordinates fit in the boundary enclosing 
them? 

These color spaces, however, have an important 
limitation, which is that they do not accurately represent how 
many just-noticeably different colors can be placed between 
two colors that are far apart. That is, while for a pair of colors 
that are two units apart, the prediction that only a single color 
can be placed between them that is distinguishable from both 
is reliable, but it does not follow that a pair of colors that is 20 
units apart can accommodate 19 intermediate, pairwise-just-
noticeably-different colors. Instead, only a smaller number of 
such intermediate colors would be possible. This “diminishing 
return” nature of color spaces like CIE LAB and CIE CAM16 
corresponds to their being non-Riemannian, due to their 
additivity failure along a path connecting two colors [17, 18]: 

 ||A-C|| > ||A-B|| + ||B-C||  (8) 
where B is a color on the shortest path between colors A 

and C and ||x|| is the L2 norm of vector x. This characteristic of 
color differences has also been long understood in the context 
of color difference equation research, where separate solutions 
have been developed for predicting small versus large 
differences. 

A consequence then is that wrapping a boundary around 
accurate predictions of the colors of the OCS and then 
determining the cardinality of the unit-distance-spaced 

coordinates that pack it will result in an overprediction of how 
many just-noticeably different colors the OCS accommodates. 

To better quantify that cardinality, a space is needed in 
which small, local distances accurately predict just-noticeable 
differences, instead of a space that accurately predicts the color 
appearance attributes of stimuli. One way to do so would be to 
take a space like CIELAB and then distort it to make it uniform 
in terms of a good small-distance ∆E metric like CIE ∆E2000 
[19], which could be done using Urban et al.’s approach [20]. 
However, a recent, large-scale study has shown that an even 
better predictor of small color differences than CIE ∆E2000 
[21] is the CAM16 Uniform Color Space (UCS) [22]. 

Representing the OCS in CAM16-UCS results in a volume 
of 502,736 cubic CAM16-UCS units (Fig. 13), which can be 
HCP-packed with 710,976 HCP points at unit distance from 
each other. 

 

 
Figure 13. The radius=40 alpha hull of the Object Color Solid under D65 
and for the 2° standard observer in CAM16-UCS. 

In other words, the volume delimited by OCS colors 
would fit 2,847,470 HCP-packed unit-distance-spaced points in 
CIE CAM16, which is optimized for color appearance 
prediction. However, only 710,976 HCP-packed unit-distance-
spaced points fit into the OCS in CAM16-UCS, which is 
optimized for small color difference prediction, and which is a 
better basis for answering the question of how many distinct 
colors there are within the OCS. The difference between the 
two is also an indication of the severity of non-additivity of 
color differences across the full OCS color gamut. 

Instead of using unit diameter spheres that represent color 
difference perception between two spatially clearly separated 
and uniform color patches on a mid-gray background, it is also 
possible to use other thresholds for color difference in different 
contexts. E.g., when viewing continuous transitions of color, 
the perceptibility threshold may be somewhere in the region 
of 0.70 to 1.01 ∆E UCS units [23]. Using the lower value and 
packing the OCS gamut with 0.70 diameter spheres then gives 
2,072,816 as the number of colors needed to construct 
continuous-appearing color transitions – around 4 times as 
many as can be perceived as different when viewed as uniform 
color patches. 



 

 

Conclusions and next steps 
In this paper an analysis of the cardinality of color stimuli 

and percepts has been presented taking a first-principles 
approach. Starting with the spectral domain, the effect of 
quantization and measurement noise was discussed and 
cardinality (“how many objects are there in a set”) was 
introduced. Due to the nature of noise – whether spectral or 
colorimetric – a sphere-packing approach was presented and 
applied to both spectral and colorimetric data. 

Considering quantization alone – applicable to all real data 
– a significant effect on the number of unique reflectances, as 
well as the colorimetric error due to quantization could be 
seen. Moving from an 8-bit encoding to 16-bit encoding results 
in an exponential increase in the number of unique reflectances 
that can be represented (by a factor of 1075) which in turn 
results in going from an approximate potential median 
colorimetric error of 0.1 ΔE2000 (maximum of 0.35) to a 
median below 0.05 ΔE2000 (maximum of 0.15). 

Turning to measurement noise and applying the HCP 
sphere-packing analysis to determine cardinality in the 
spectral domain (over a fixed volume of 1.0) showed that even 
low levels of measurement noise can have a significant effect 
on cardinality, e.g. without measurement noise (at a 16-bit 
precision and in 24 dimensions) 10122 unique reflectances can 
be considered, while at the maximum considered noise of 0.029 
this number drops to 1044 (a loss by a factor of 1078), 
corresponding to an increase in median colorimetric error from 
essentially 0.0 (0.00016) to 0.30 ΔE2000. Instead, in a biological 
domain, the responses to all spectra have a cardinality of only 
2x109 due to their much reduced dimensionality and the 
relative coarseness of retinal signal encoding.  

Finally, applying the cardinality analysis via HCP sphere-
packing in the CIE LAB, CIE CAM16 and CAM16-UCS color 
spaces, results show different cardinalities of color stimuli, 
from 2.3M for CIE LAB and 2.0M for CIE CAM16 to 0.7M for 
CAM16-UCS, assuming the same unit sphere diameter and for 
the viewing conditions and geometry under which canonical 
color difference equations are developed where color patches 
are viewed with a clear separation against a gray background. 
These results highlight some of the shortcomings of these color 
spaces, including their non-additivity. Context also greatly 
impacts color stimulus cardinality and it was shown how the 
perceptibility threshold for continuity of color transitions of 
0.7 ∆E UCS yields 2.1M unique colors. 
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