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Abstract
A pipeline for the generation of synthetic dataset of spec-

tral scenes, with corresponding sensor readings, is here proposed.
The pipeline is composed of two main parts: Part 1: Image pixel
reflectance assignment. Individual pixels from an input sRGB
image dataset are replaced with appropriate reflectance spectra
from a given non-image reflectance dataset. The resulting dataset
of reflectance images is considered the starting point for simu-
lated sensor acquisition. Part 2: Simulated sensor acquisition.
Each spectral reflectance image in the dataset is illuminated with
an illuminant spectra to produce a radiance image. The result-
ing dataset of radiance images is then synthetically read from the
simulated sensors (camera and ambient multispectral sensor) of
the Huawei P50 phone, using the corresponding sensors transmit-
tance information. The capability of generating any large-scale,
diverse, and annotated synthetic spectral datasets can facilitate
the development of data-driven imaging algorithms, and foster
reproducible research.

Introduction
Spectral imaging, which captures rich spectral information at

each pixel, has emerged as a powerful technique with applications
in various fields, including remote sensing, biomedical imaging,
material analysis, digital photography, computational photogra-
phy and more. However, the availability of high-quality spectral
datasets is often limited, hindering the development and evalua-
tion both of spectral and RGB imaging algorithms.

In recent years, the use of synthetic datasets has gained
prominence as a valuable resource for training and evaluating
computer vision algorithms. Synthetic data provides the flex-
ibility to control various imaging parameters, facilitating al-
gorithm development and benchmarking in controlled settings.
However, most existing synthetic datasets focus on conventional
RGB images, neglecting the crucial spectral dimension. Spectral
datasets, on the other hand, are often limited to patch-based (e.g.
“Mondrian-like [1]”) content, which for example limits the appli-
cability of advanced methods for spectral reconstruction that rely
on the analysis of scene content.

To address this gap, we present a comprehensive pipeline
for generating synthetic datasets specifically tailored for spectral
images. Our pipeline aims to provide researchers with a diverse
and content-customizable source of spectral images, enabling the
advancement of spectral imaging algorithms and applications.

The benefits of synthetic spectral datasets are manifold.
Firstly, they offer a controlled environment for algorithm devel-
opment, allowing researchers to assess the performance of spec-
tral imaging techniques under various conditions, such as differ-

ent illuminants, surface reflectance properties, and atmospheric
effects. This controlled experimentation may help in understand-
ing the limitations and strengths of different algorithms. Further-
more, synthetic datasets offer a practical solution to the scarcity of
real-world spectral datasets, which often suffer from limited cov-
erage, restricted access, or prohibitive costs. The availability of
large-scale, diverse, and annotated synthetic spectral datasets can
bridge this gap, facilitating the development of data-driven algo-
rithms and fostering reproducible research. Our synthetic dataset
generation also enables the exploration of new applications and
algorithms that leverage spectral information. For instance, spec-
tral image analysis plays a crucial role in precision agriculture,
where the identification of crop health, disease detection, and nu-
trient analysis can be enhanced using spectral data. Additionally,
in the field of material analysis, synthetic spectral datasets can
aid in material identification, classification, and characterization
tasks.

Our pipeline consists of two main components: image pixel
reflectance assignment, and simulated sensor acquisition under
the chosen light. These components work together to produce
high-quality synthetic datasets that mimic real-world image ac-
quisition processes and exhibit realistic visual characteristics. We
evaluate the fidelity of our pipeline, using the INTEL-TAU dataset
as an example benchmark [2]. To optimize the dataset generation
pipeline and reduce computational time, we introduce a lookup-
table (LUT) mechanism, through which we achieve a significant
reduction in dataset generation time. We quantify the perfor-
mance improvement through experimentation and highlight the
efficiency gained by implementing the LUT mechanism.

Methodology
Our pipeline consists of two main research components: re-

flectance assignment and simulated sensor acquisition.
The reflectance assignment component focuses on assigning

appropriate reflectance spectra to the initial dataset of RAW and
sRGB images. While the reflectance assignment component lays
the foundation for generating realistic synthetic datasets, the sim-
ulated sensor acquisition component simulates the image forma-
tion process that occurs in digital cameras or Ambient light Mul-
tispectral Sensors (AMS). Figure 1 provides an overview of the
pipeline architecture.

Image Pixel Reflectance Assignment
The reflectance assignment step in our pipeline involves gen-

erating a synthetic dataset of spectral reflectance images based on
existing image and spectra datasets. This step is crucial in creat-
ing a diverse and representative dataset that aligns with the content
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Figure 1. Overview of the synthetic dataset generation pipeline. Different cardinalities are reported below each data element, including: the number of

reflectance spectra (M), the number of sRGB images (N) with weight W and height H, the number of spectral channels for the output images (Λ), and the number

of spectral illuminants (P).

distribution of existing sRGB datasets while incorporating accu-
rate spectral reflectance information. The approach of assigning
metameric reflectance spectra to RGB pixels has been presented
in the past [3], applied in the context of computer graphics scenes.
While this approach has the significant advantage of enabling the
modelling of mutual surface and complex materials interaction, it
depends on the costly creation of ad-hoc three-dimensional mod-
els. In our case, the initial sRGB dataset is selected based on spe-
cific requirements, including a wide range of subjects and neutral
or known illuminants. In our pipeline, we utilize the INTEL-TAU
dataset [2] as the starting point for synthetic dataset generation, as
documented later on.

The scheme of this first part of the dataset generation
pipeline is detailed in Figure 2, assuming the availability of a
RAW-image dataset instead of an already sRGB image dataset.
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Figure 2. Detailed pipeline of part 1 of synthetic dataset generation: image

pixel reflectance assignment.

For the actual reflectance data, we rely on existing spec-
tra datasets that provide accurate measurements of spectral re-
flectance across different materials and surfaces. These datasets
serve as a reliable source of ground truth reflectance information,
enabling the creation of realistic spectral images.

During the reflectance assignment process, we determine the
most similar sRGB triplet for each pixel in the synthetic images.
This involves finding the reflectance spectrum that best matches
the desired sRGB values. By comparing the spectral characteris-
tics of the available reflectance spectra, we identify the spectrum
that produces the closest resemblance to the target sRGB triplet.

Once the reflectance spectrum is identified, we assign it to
the corresponding pixel in the synthetic image. This step ensures
that each pixel in the generated dataset has an associated spectral
reflectance value that aligns with the desired sRGB color. By per-
forming this assignment for every pixel, we create a dataset with
pixel-level accuracy in terms of spectral reflectance information.

It is important to note that once the synthetic dataset is gener-
ated, the original sRGB reference becomes irrelevant. The newly
created spectral image dataset is considered the ground truth for
subsequent steps and experiments. This allows researchers to
work with a dataset that provides accurate spectral information
and facilitates the evaluation and comparison of spectral imaging
algorithms.

Lookup-Table (LUT) Computation
To optimize the time required for reflectance assignment, we

employ a lookup-table (LUT) mechanism. The LUT is precom-
puted once for a given reflectance spectra dataset and similarity
function. It covers all possible sRGB triplets, allowing for effi-
cient and fast retrieval of the most similar reflectance spectrum
during the dataset generation process.

The LUT computation involves the following steps:

1. Preprocessing: The reflectance spectra dataset is prepro-
cessed to remove noise and irrelevant information. Addi-
tionally, any necessary normalization or transformation is
applied to ensure consistency.

2. Similarity Function Selection: A similarity function is cho-
sen to measure the similarity between sRGB triplets and re-



flectance spectra. The choice of similarity function depends
on specific requirements and research goals.

3. LUT Construction: For each sRGB triplet, the LUT is
constructed by finding the most similar reflectance spectra
based on the selected similarity function. This process in-
volves comparing the sRGB triplet with all reflectance spec-
tra in the dataset and storing the corresponding indices of the
most similar spectra in the LUT.

Once the LUT is computed, it can be utilized during the re-
flectance assignment phase to significantly reduce computational
time.

Simulated Sensor Acquisition
The simulated sensor acquisition component replicates the

image formation process that occurs in digital cameras and
Ambient-light Multispectral Sensors. This process involves in-
tegrating surface reflectance information, illuminant sources, and
specific transmittance channels to compute the observations cap-
tured by the imaging sensors.

The simplified equation for image formation is as follows:

O(ρ) =
∫

λ

R(λ ) · I(λ ) ·S(ρ)(λ )dλ (1)

Here, O(ρ) represents the observation at channel ρ , obtained
by integrating the product of surface reflectance R(λ ), illuminant
source I(λ ), and specific transmittance channel S(ρ)(λ ) over the
wavelength λ . In the case of an AMS, the spatial information re-
lated to radiance data (R(λ ) · I(λ )) is spatially averaged according
to specifications before applying the specific transmittance chan-
nel and integrating the result.

Data selection and filtering
Reflectance data

The considered dataset of (non-image) reflectance spectral
data are summarized in Table 1.

Table 1. Summary statistics of considered reflectance
datasets.

Name # spectra Range (nm) # bands step (nm)

Munsell [4] 1269 380-800 421 1
Ridiqulous [5] 43M / 7M / 114K 400-700 31 10

The chromaticity of the reflectance spectra are visualized in
Figure 3 under D65 reference illuminant. The Ridiqulous dataset
is composed from various sources of multispectral and hyperspec-
tral data (full list at [5]). Three versions of the dataset are publicly
available, with spectra clustered at various levels to reduce redun-
dancy.

The Ridiqulous dataset was found to be an adequate source
of information for synthetic dataset generation, specifically as the
7M and the 100K versions which reduce redundancy and allow for
agile data management. However, some of the involved spectra
are characterized by saturated and/or highly-quantized bands. We
therefore defined an automated procedure, illustrated in Figure 4,
aimed at automatically removing such elements:

• We characterize each spectrum based on v1: the maximum
number of repeated consecutive elements in the spectrum.

C
IE

 y

CIE x CIE x CIE x CIE x

Ridiqulous
43,714,197 spectra

Ridiqulous7M
7,326,497 spectra

Ridiqulous100K
114,120 spectra

Munsell
1269 spectra

Figure 3. Chromaticity (under D65) of the illuminants of considered spectra

reflectance datasets.

• We eliminate all spectra where v1 ≥ 3 (out of 31
bands/samples).

After filtering, Ridiqulous100K had 365/114120 spectra re-
jected (0.32%), and Ridiqulous7M had 33017/7326497 spectra
rejected (0.45%).

Figure 4. Examples of the characterization of the Ridiqulous spectra based

on v1: the maximum number of repeated consecutive elements in the spec-

trum. Samples with v1 ≥ 3 are removed from the dataset.

Illuminant data
The considered datasets of spectral illuminant data are sum-

marized in Table 2.

Table 2. Summary statistics of considered illuminants
datasets.

Name # spectra Wavelength range (nm) # bands step (nm)

LSPDD [6] 307 273-899.5 1254 0.5
Internal 62 380-780 401 1

The LSPDD dataset offers a wide set of illuminants, with
fine spectral resolution, and a wide variety of classes. Due to lim-
itations in the corresponding license, however, we focus our ex-
perimental setup on using an internal source of illuminant spectral
data. Figure 5 offers a detailed view of the 62 illuminants in the
Internal illuminant dataset, as grouped by class information (flu-
orescent, LED, CIE-D series, CIE-A series).

Transmittance data and AMS characterization
The considered sensors for synthetic dataset generation, are

summarized in Table 3.

Table 3. Summary statistics of considered sensors.

Type # spectra Range (nm) # bands step (nm)

Camera 3 400-720 161 2
AMS 8 out of 10 380-1100 721 1

The camera is that of a Huawei P50 smarpthone. The AMS
is characterized by 10 spectra (channels), of which only the first
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Figure 5. Illuminant spectra of our internal illuminant dataset, grouped by

class.

8, contained in the visible spectrum, are considered within this
research project.

Image dataset
Existing image datasets with spectral reflectance information

are available, but they are limited in size and content distribu-
tion (e.g. NUS (2014) [7], Stanford HS (2013) [8], Stanford MS
(2008) [9], CAVE (2008) [10], MS Image db (2004) [11]). We
are therefore generating a synthetic dataset of spectral reflectance
images according to these criteria:

• The image content distribution is guided by existing sRGB
datasets.

• The actual reflectance data comes from existing spectra
datasets.

For the choice of initial RAW (and consequently sRGB)
dataset, we set the following requirements:

• Wide range of subjects
• Neutral or known illuminants

To this extent, we exploit images from AWB (Automatic White
Balance) datasets, which are provided with a known illuminant
that can be neutralized before application of arbitrary illuminants.
We rely on our previous analyses [12, 13], synthesized and illus-
trated in Figure 6. The INTEL-TAU dataset [2] is characterized
by high cardinality and a fair distribution of image content, and
it is therefore selected as the starting point for synthetic dataset
generation.
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Figure 6. Cardinality and class distribution of popular AWB datasets.

Experimental validation
Fidelity validation for reflectance assignment

We validate the fidelity of part 1 of the dataset genera-
tion pipeline, by comparing the “sRGB image dataset” with the
“Spectral-image (radiance) dataset”, as indicated in Figure 2. We

perform these comparisons by measuring distances in several
color spaces: RGB as it is directly accessible and consequently
characterized by low computational requirements, CIELab and
ProLab [14] as they are designed to be perceptually uniform. We
then evaluate perceptually the results using both ∆E76 and Pro-
Lab Euclidean distances. Additional experiments might be per-
formed in the future using other distances, including variations of
CIELab’s ∆E76 such as ∆E00. These validations allow us to as-
sess the accuracy of the reflectance assignment process and make
informed decisions regarding the choice of reflectance datasets,
spectral sampling, and the space for assigning the closest spec-
trum.

Table 4. Fidelity validation of part 1 of our synthetic dataset
generation pipeline (reflectance assignment).

Optimization Evaluation
Sampling Reflectance db Space ∆E76 proLab eu.d.

1nm Munsell RGB 7.148 5.010
1nm Munsell ProLab 6.685 4.699
1nm Munsell CIELab (∆E76) 5.328 5.653
1nm Ridiqulous100K RGB 1.162 0.625
1nm Ridiqulous100K ProLab 1.144 0.535
1nm Ridiqulous100K CIELab (∆E76) 0.895 0.725
10nm Munsell RGB 7.155 4.997
10nm Munsell ProLab 6.702 4.677
10nm Munsell CIELab (∆E76) 5.335 5.648
10nm Ridiqulous100K RGB 1.160 0.624
10nm Ridiqulous100K ProLab 1.144 0.534
10nm Ridiqulous100K CIELab (∆E76) 0.895 0.725
10nm Ridiqulous7M ProLab 0.227 0.114
10nm Ridiqulous7M CIELab (∆E76) 0.180 0.149

Results are reported in Table 4. The following observations
can be derived from the results.
Sampling:

• The advantage of having a finer sampling (1 nm vs 10 nm)
is not evident at this step

– Recall that Ridiqulous comes with a 10nm step,
and Munsell with a 1 nm step. Sprague interpola-
tion [15] was used to augment the spectral resolution
of Ridiqulous.

Reflectance dataset:

• Ridiqulous100K has a clear advantage w.r.t. to Munsell:

– ∼1 unit in ∆E76 vs. ∼5 in ∆E76.

• Ridiqulous 7M has an even larger advantage than
Ridiqulous100K:

– ∼0.2 in ∆E76 vs. ∼1 in ∆E76.
– Limited experiments due to time requirements.

Space for assigning the closest spectrum:

• As expected, optimizing for ∆E76 will produce the best so-
lution according to ∆E76, and optimizing for proLab will
produce the best solution according to proLab

• Interestingly, when evaluating with proLab, the second best
solution is optimizing for RGB, not ∆E76.



Table 5. Fidelity validation for simulated sensor acquisition, depending on the RAW-to-XYZ correction matrix optimized on different
illuminants combinations (rows), as tested on different illuminant conditions (columns, with illuminant cardinality in parentheses).
Using a linear 3×3 matrix (top), or 10×3 polynomial expansion. The main table reports ∆E76 on the XYZ computed from radiance
spectra vs. the XYZ computed from the camera RAW-RGB readings. The last column reports the intrinsic optimization error.

Test illuminants Matrix optim.
3×3

A (3) D65 (1) E (1) FL (15) LED (1) ALL (21) ∆E76
A (3) 1.159 3.810 3.870 3.397 1.187 3.014 1.541
D65 (1) 3.170 1.405 1.603 2.492 2.137 2.478 1.311
E (1) 2.777 1.346 1.508 2.500 1.911 2.409 1.393
FL (15) 4.251 2.319 2.447 1.719 3.498 2.228 2.395
LED-RGB (1) 2.331 7.896 7.052 5.501 0.526 4.999 0.705

Train
illuminants

ALL (21) 2.407 1.370 1.377 2.028 2.122 2.024 3.073

Test illuminants Matrix optim.
10×3

A (3) D65 (1) E (1) FL (15) LED (1) ALL (21) ∆E76
A (3) 1.422 7.417 6.892 4.955 1.639 4.502 1.346
D65 (1) 2.325 1.784 1.830 4.329 1.665 3.675 1.358
E (1) 2.213 1.932 1.903 4.888 1.974 4.084 1.444
FL (15) 4.560 2.782 2.818 1.736 3.897 2.344 2.319
LED-RGB (1) 2.214 11.248 9.475 6.000 0.584 5.617 0.698

Train
illuminants

ALL (21) 3.474 2.297 2.036 2.049 4.045 2.359 2.919

An example of sRGB images rendered after the image pixel
reflectance assignment step is provided in Figure 7, visually high-
lighting the difference in using the Munsell or the Ridiqulous7M
as the spectra reflectance dataset.

RAW RAW to sRGB

Multispectral to sRGB
Munsell

Multispectral to sRGB
Ridiqulous7M

Figure 7. Example image in its original RAW format, in sRGB represen-

tation obtained directly from the RAW, and in sRGB obtained after multi-

spectral reflectance assignment (using Munsell or Ridiqulous as the spectra

reflectance dataset).

Code optimization
After optimization, the time to generate a synthetic dataset is

∼0.2 seconds per image using the Ridiqulous100K spectra, which
translates to ∼20 minutes for 5000 images @ 500×400 pixels
(0.46% of the original time). The LUT computation step itself (to
be performed once per spectra dataset / similarity function) takes
∼45 minutes for the Ridiqulous 100K spectra, and ∼48 hours for
the Ridiqulous7M spectra.

Fidelity validation for simulated sensor acquisi-
tion

The fidelity and correctness of the simulated sensor acqui-
sition part can be verified for the camera sensor by testing the
difference between:

• The XYZ computed from radiance spectra.
• The XYZ computed from the camera RAW-RGB readings.

In order to obtain XYZ coordinates from the camera RAW-
RGB readings, the validation involves the creation of a RAW-to-
XYZ color correction matrix (CCM), optimized using reflectance
spectra datasets. We evaluate the optimization process and ma-
trix usage under different illuminants and expansion techniques,
providing insights into the performance and generalization capa-
bilities of the matrix.

The procedure for this validation is visualized in Figure 8.
This validation first requires the creation of a RAW-to-XYZ color
correction matrix (indicated as “Smartphone CCM” in figure).
Such matrix is optimized as a Moore-Penrose pseudoinverse [16]
starting from a dataset of reflectance spectra (e.g. Munsell or
Ridiqulous):

3×3 : only RGB
10×3 : polynomial (R, G, B, R2, G2, B2, RG, RB, GB, 1)

According to preliminary experiments in RAW-to-XYZ ma-
trix generation, the more simple Munsell dataset allows for better
generalization than any version of the Ridiqulous dataset. For this
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Figure 8. Fidelity validation procedure for the simulated camera acquisition

described in part 2 of the dataset generation pipeline.

reason, in the following evaluation we will use the Munsell dataset
specifically for matrix generation. We use either A (3), D65 (1), E
(1), FL (15), LED-RGB (1), or all of the above illuminants (21),
with or without polynomial expansion. We evaluate two steps:

• The matrix optimization itself (optimization error).
• The matrix usage for simulated camera reading within the

dataset generation pipeline.

Results are presented in Table 5 under the following conditions:

• We test on Ridiqulous7Mf (filtered), using either illuminant.
• We use a sample of 10 representative images.

In the current experimental setup, polynomial expansion pro-
duces worse (or equivalent) performance w.r.t. a simpler 3×3
matrix. Specifically, polynomial expansion has a positive effect
mainly when the images are illuminated by class A illuminants.
An improvement is also observed on LED-RGB-illuminated im-
ages, when the matrix is optimized using D65.

Conclusions
We presented a pipeline for generating synthetic datasets for

spectral imaging research, starting from any sRGB image collec-
tion. Our pipeline simulates the image formation process and pro-
duces high-quality synthetic datasets for evaluating spectral and
RGB imaging algorithms. By employing a precomputed look-up
table mechanism, we optimized the reflectance assignment stage,
significantly reducing dataset generation time. This allows for ef-
ficient exploration of different datasets and similarity functions.

The simulated sensor acquisition stage accurately models
the image formation process using reflectance spectra, illumi-
nant sources, and specific transmittance channels. Leveraging the
INTEL-TAU dataset, we ensured fidelity and accuracy in the syn-
thetic datasets. To validate the fidelity of simulated sensor acqui-
sition, we compared computed XYZ values from radiance spectra
with those from camera RAW-RGB readings, ensuring accuracy
and reliability of the synthetic datasets.

In conclusion, our pipeline provides a valuable resource for
spectral imaging research, enabling the evaluation and improve-
ment of spectral and RGB imaging algorithms across various do-
mains. Future work includes optimizing the reflectance assign-
ment process, exploring alternative similarity functions, and ex-
panding the pipeline to incorporate additional sensor models or
spectral imaging modalities. We anticipate that this work will
inspire new avenues of exploration and innovation, leading to fur-
ther progress in the field. Furthermore, the benefit of using the

generated dataset, in comparison with existing datasets, will be
demonstrated in multispectral applications in future works.
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