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Abstract

The Matrix-R decomposition teaches that, with respect to a
set of sensors, any spectrum can be written as the sum of its fun-
damental metamer—in the subspace spanned by the spectral sen-
sitivities of the camera—and a metameric black (orthogonal to
the camera spectral sensitivities). In any RGB-to-spectra recov-
ery algorithm we might expect a good spectral recovery to have
the property that, when projected onto the RGB sensors, it equals
the RGB from which it was estimated. Or, equivalently, the fun-
damental metamers of the ground-truth and algorithm-recovered
spectra should be equal.

In this paper, we make this expectation more concreted and
present an elementary proof that this “Matrix-R-compliance”
post-processing step must always improve the RMSE (root-mean-
squared error) accuracy of any RGB-to-hyperspectral recovery
algorithms. Further, we consider and rework the proof for the
case where the spectral data is known to live in a basis of small
finite dimension. Experimental results are presented for three
historic RGB-guided hyperspectral pan-sharpening algorithms.
Here the algorithm input includes a high-spatial-resolution RGB
image and a low-resolution hyperspectral counterpart. We show
the evidence that the RMSE accuracy of all tested algorithms are
improved by this Matrix-R-compliant process, while we also find
the best recovery results from adopting a low-dimensional linear
model that models the variation of spectra in a scene.

1. Introduction

An RGB camera uses 3 types of color sensor to capture ra-
diance spectral signals coming from the scene, resulting in 3-
channel RGB responses. Nowadays, this RGB imaging technique
is the most common way of observing the light spectra, and yet it
loses much information of the spectra by only recording 3 num-
bers per pixel [6]. In many practical applications, including med-
ical imaging [21, 11], remote sensing [28, 26], food processing
[7, 13, 23] and art conservation [24, 14], it is more useful to mea-
sure high-spectral-resolution signals at all pixels using the hyper-
spectral cameras.

Due to the high price tag of hyperspectral cameras and also
their limited spatial resolution, mobility and temporal resolution,
there are numerous works focus on recovering the hyperspectral
images from the RGB images. Examples include the direct RGB-
to-hyperspectral mappings (i.e., spectral reconstruction) [3, 4] and
RGB-based pan-sharpening [17, 19, 18, 30, 15]. We will focus on
the latter approach, where the low-spatial-resolution hyperspec-
tral images are super-resolved using their RGB image counter-
parts which have much higher spatial resolution. But, unlike most
recent works in pan-sharpening, in this paper we take a step back
to re-investigate a fundamental question: “Given the RGB obser-
vation, what can we be certain about the spectral signal?”

Back in 1953, Wyszescki [29] first described that each radi-
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Figure 1. Based on the Matrix-R theorem, the fundamental metamer of
the ground-truth spectra can be exactly calculated from their RGBs. This
flowchart shows that the Matrix-R-compliance process post-corrects the fun-
damental metamers of the spectra recovered by learning algorithms, by re-
placing them with ones calculated from the RGB inputs.

ance spectrum is composed of a fundamental component intrin-
sic to its RGB tristimulus response (later called the “fundamental
metamer”) and its “metameric black” which returns [0, 0, 0] for
the RGB response. The formulation of how these two components
are derived was proposed later by Cohen and Kappauf [9], namely
the Matrix-R theorem. In Matrix-R, the fundamental metamer is
derived by projecting the spectrum onto the 3-dimensional spec-
tral subspace spanned by the spectral sensitivities of the 3 color
sensors. Equally, for a given set of RGB spectral sensitivities, the
fundamental metamer can be calculated from the measured RGB
response of the spectrum (which does not require the spectrum
directly). And, by subtracting the fundamental metamer from
the spectrum we derive the metameric black component, which is
provably “zero-colored” because it is perpendicular to all 3 sen-
sors’ spectral sensitivities.

Since the fundamental metamer of a spectrum can be
uniquely derived from its RGB values, all spectra having the
same RGB values, i.e., the metamers [9, 12], will also have the
same fundamental metamer component. On the other hand, the
metameric black is what distinguishes the metamers from each
other and—save the requirement of returning zeros for RGB
values—the metameric black is arbitrary. In other words, the
Matrix-R theorem teaches that given the RGB observation of a
spectrum, we can directly derive, and thus 100% certain about, its
fundamental metamer. The only uncertainty lies in its metameric
black component.

Indeed, in 1998, Imai and Burns [15] found that Matrix-R
itself is a useful RGB pan-sharpening algorithm: by replacing
the fundamental metamer at each pixel of the low-resolution hy-
perspectral image (resized to the size of the RGB image) by the
one derived from the high-resolution RGB image, they obtained
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the sharpened hyperspectral image with tolerable error. Nev-
ertheless, thereafter most proposed pan-sharpening algorithms
(e.g., [17, 19, 18, 30]) do not explicitly ensure the compliance
of Matrix-R theorem, i.e., the fundamental metamers of the re-
covered spectra might not be the same as ones derived from the
RGBs.

As shown in Figure 1, we propose that all hyperspectral
recovery approaches and algorithms—not limited to spectral re-
construction and RGB-based pan-sharpening—should conduct a
post-processing step where the fundamental metamers of the re-
coveries are replaced by ones computed from the input RGBs.
Significantly, we prove that this procedure will always improve
or retain the Root-Mean-Squared Errors (RMSE) between the
ground-truths and recoveries, where RMSE is already a common
performance metric for evaluating spectral recoveries.

Further, we rework the proof for a world where measured
spectra are well modeled by a low-dimensional linear basis. Rel-
ative to this assumption, the low-dimensional-basis variant of
our proof suggests an analogous “must improve” feature of the
Matrix-R-compliance process: it prescribes a spectral component
substitution that will always take you closer to the ground truth.

We test our theorem on several historic RGB-based pan-
sharpening algorithms and show that the proposed Matrix-R-
compliance post-processing procedure always—as we knew it
must—improve the performance of the algorithms. Then, em-
pirically, the best performance for each pan-sharpening algorithm
is found for our low-dimensional-basis construct.

2. Background

2.1. Color image formation

The light’s radiance spectrum coming from the scene can
be written as a continuous spectral function E(A). Then, given
an RGB camera, we have 3 types of color sensors with different
spectral sensitivities, denoted as Qi (A ), such that [27]:

[ EMeAdr=pi: k=123 (1)

Here, py is the camera response with respect to Oy, and the range
of integration, , is the visible range of wavelengths, within
which the RGB sensors are responsive. Q runs roughly from 400
to 700 nanometers (nm).

Using a hyperspectral imaging device, we can measure E (1)
at finely-sampled wavelengths. Assuming we sample n points
within the 400 to 700 nm range (n >> 3), we get an n-dimensional
vector of measurements e = [E(A;),E(A2),---,E(A,)]T. Then,
we can also measure Q(A)’s (i.e., the spectral sensitivity func-
tions of the 3 color sensors) at the same discrete wavelengths us-
ing, e.g., a spectrally-scanning monochromator [16]. With these
discretized measurements, we derive a vectorized form of Equa-
tion (1) [27]:

Q'e=p. @)

where the columns of Q are the discretized Qi (A)’s (Qisann x 3
matrix), and p = [py, p2,p3] " is the RGB vector.

2.2. Matrix-R
The so-called “Matrix-R” is in effect a matrix that projects
any spectra onto the column space of Q. In linear algebra, this

projection matrix is written as [5]:
R=Q[Q'Q'Q". G

Using this R matrix, we can calculate the component of a given
spectrum e that lies in the column space of Q:

Crm = Re
=Q[Q'Q'QTe )
=Q[Q"Q 'p.

€rp is called the fundamental metamer of e. It is clear that:

1. QTgfm = QTQ = p, meaning that [ has the same RGB
Sensor response as e

2. ey, is fixed for all spectra satisfying QTe= p (all spectra
that returns the same color when observed by the camera
sensitivities Q).

3. ey, can be exactly calculated given camera’s spectral sensi-
tivities Q and the RGB sensor response p.

On the other hand, the residual component:

€ub =€ —€fp s (5)

is called the metameric black. If we seek to calculate the color of
e, We get:

Qe =p—p=10,0,0"". O

In the parlance of linear algebra, we say e, lies in the null space
of the column space of Q. And, this null space is in fact the resid-
ual n — 3 dimensions in the spectral space that are perpendicular
to the 3-dimensional camera sensor subspace spanned by columns
of Q [5].

Unlike e, which can be calculated directly from the RGB,
e,,, is unbounded by the color image formation. Indeed, e,,;, can
be any vector in the (n — 3)-dimensional null space of Q without
altering the RGB observation p. Despite the theoretical uncer-
tainty of e,,;, (and thus e) given an RGB observation, in practice,
we can statistically bound this uncertainty given a dataset of con-
cern.

2.3. RGB-based pan-sharpening

In pan-sharpening, we wish to fuse hyperspectral images
captured in low spatial resolution with their higher-resolution
panchromatic (gray scale) or RGB counterparts (Figure 2), aiming
at producing hyperspectral images with the higher spatial resolu-
tion [20]. In this paper, we consider the following three historic
RGB-based pan-sharpening algorithms.

First, in Imai and Burns [15], the lower-resolution hyper-
spectral image is first resized (upsampled) to the same image di-
mension as the RGB image. Then, at each pixel, we calculate the
fundamental metamer component (gfm) from the RGB and the
metameric black component (e,,;,) from the hyperspectral mea-
surement. The final spectral recovery is simply the sum of the two
components. In effect, this method uses the Matrix-R theorem to
correct only the part of spectra that are theoretically certain, i.e.,
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Figure 2. The illustration of the RGB-based pan-sharpening. The im-
ages are generated from ICVL hyperspectral image database [2]. Left: the
demonstration of the low-resolution hyperspectral image. Center: the high-
resolution RGB image. Right: the pan-sharpened high-resolution hyperspec-

tral image.

fundamental metamers, without further bounding the spectral un-
certainty using data.

Second, the Coupled Nonnegative Matrix Factorization
(CNMF) method [30] emerged as a prominent approach in pan-
sharpening. CNMF alternately unmixes the hyperspectral and
multispectral (RGB) images using the nonnegative matrix factor-
ization technique. This iterative process enables accurate estima-
tion of end-member spectral signatures and high-resolution abun-
dance maps, leading to enhanced spatial resolution in the final
hyperspectral data.

Lastly, Lanaras et al. [19] combines two input images and
jointly separates them into pure reflectance spectra of the ob-
served materials and the corresponding mixing coefficients. By
incorporating these physical constraints on the spectra when for-
mulating a coupled matrix factorization problem, Lanaras et al.
achieves further improved results.

3. Proposed Method

Let us denote e as the ground-truth spectrum at a pixel and €
the spectral recovery from a pan-sharpening algorithm (or straight
up the spectrum in the resized low-resolution hyperspectral image
for Imai & Burns [15]). A priori, we can write both e and € as
sums of fundamental metamer and metameric black:

€= gfm +€u
N (7
€=¢€ry +eu

While we do not know the ground-truth spectrum e in prac-
tice, we can still calculate e i from the input RGB P, as shown in
Equation (4). Nevertheless, most algorithms in data-driven pan-
sharpening do not ensure Efm = ey,,- Hence, in this paper, the
following Matrix-R-compliant post-processing of € is proposed:

).

:E_/éfm +§fm

(®)

=Cfm +Emb )
where € is the corrected pan-sharpening output.

Theorem 1. The adjusted output, €, calculated using Equation
(8), will always be closer to the ground truth e than the initial
estimate €, i.e., |le—€ || < |le —¢€|| (where || -|| denotes the L-2
norm).

Proof. Let us denote A = |le —¢||> and A’ = ||e—€'||* . Clearly,
the theorem will be proved if we prove A’ <A

First, let us consider A with respect to the fundamental
metamer and metameric black decomposition:

A=|le—¢|?
= |1(efm +&mp) — €1 + €)1
= 1@ —€m) + (€mp — &) I ©)
= (1€ — €l >+ ll€mp — Ep| >
+2-[es _Efm]T[gmb — €] -

Here, the cross-term:

(€ — €] € — €] =0 (10)

Indeed, because both [ and Efm lie in the spectral subspace
spanned by columns of Q, [gfm f/g\fm] is also a vector in this
subspace; on the other hand, [e,,;, —€,,] is a vector lies in the
null-space of Q, which is perpendicular to all vectors lie in the
column space of Q [5]. Substituting Equation (10) into Equation
(9), we get:
_ =< 2 S 2
AfHQfm_gme +||§mb_anH . (11)
Next, let us examine A’:
A =lle-¢|
= 2
= ||(§fm+§mb)_(§fm+§mb)H (12)
=~ 2
= lems —€mpll” -

Jointly considering Equation (11) and (12), it is immediate that:

< 2
A,:HEmh—Eth (13)
- 2 - 2
S||§fm_§fm|| +H§mb_§mbH =A.
O

Equation (13) encapsulates succinctly that the recovered
spectrum corrected via our proposed post-processing step is al-
ways as close or closer to the ground truth (compared to the orig-
inal spectrum returned by any pan-sharpening algorithm).

3.1. Low-dimensional spectral representation
Suppose spectral data lies in a lower-dimensional space, we
write:

e=Ba, (14)

where B is an n x m basis matrix (m < n), and @ is a coeffi-
cient vector with length m. Here, we further orthonormalize the
columns of B, i.e., the columns of B are normalized to unit vector
and orthogonalized to each other. This can be achieved in many
different ways, e.g. using the Gram-Schmidt process [8].

Also note that the optimal basis matrix B can be calcu-
lated per image (i.e., modeling the spectral variation within the
query image), from either the input low-resolution hyperspectral
image or the algorithm-recovered full-resolution image (ground-
truth target full-resolution spectra are not available in practice). In



Table 1. The average of the per-image mean and per-image 99-percentile (99pt) hyperspectral pan-sharpening accuracy was mea-
sured in RMSE. For each algorithm, the best results are shown in bold and underlined. §: The direct application of Matrix-R on the

resized low-resolution hyperspectral image refers to Imai & Burns [15].

Resized Only [15] CNMF [30] Lanaras et al. [19]

Mean 99pt Mean 99pt Mean 99pt
Original 0.00875 0.06274 0.00395 0.01428 0.00196 0.01054
Matrix-R$ 0.00469 0.03357 0.00296 0.01142 0.00172  0.00896
3 dim 0.01625 0.06872 0.01625 0.06872 0.01625 0.06872
4 dim 0.00388 0.02112 0.00287 0.01153 0.00259 0.01085
5dim 0.00451 0.03053 0.00284 0.01105 0.00194 0.00898
6 dim 0.00458 0.03222 0.00287 0.01115 0.00178 0.00880
7 dim 0.00460 0.03265 0.00289 0.01123 0.00174 0.00884
8 dim 0.00462 0.03280 0.00291 0.01128 0.00172  0.00885
9 dim 0.00462 0.03294 0.00293 0.01132 0.00171 0.00887
10 dim 0.00462 0.03303 0.00293 0.01133 0.00171 0.00889

our experiment, we set B as the first m singular vectors returned
by Singular Value Decomposition (SVD) [25] (since it is the m-
dimensional space that—over all possible m-dimensional spaces
spanned by the singular vectors—accounts for the greatest per-
centage of the variation of the data) on the low-resolution input
hyperspectral image.

Then, we point out that only the part of Q spanned by the
basis B contributes to the RGB observations. Indeed, since e lies
in the column space of B (Equation (14)), the part of Q perpen-
dicular to B will have no effects in the color image formation QTg
(Equation (2)). Let us define a new data-dependent spectral sen-
sitivity matrix:

Q=BB'Q, (15)

where BB is the projection matrix with respect to B (plugging B
into Equation (3) returns this projector because B has orthonormal
columns). We can now replace Q by Q in color image formation
(Equation (2)):

Q'e=Q"BB'e=QTe=p. (16)

Note that the BBT projection does not alter e because e already
lies in the column space of B, as shown in Equation (14).

With respect to Q, we can formulate an alternative Matrix-
R-compliance-type correction process analogous to Equation (8):

¢ =g +ef . an
Here, the superscript Q indicates that these fundamental metamer
terms are calculated following Equation (4), but using Q in place

of Q.

Theorem 2. Assuming the spectra in a scene live in an m-
dimensional subspace, the adjusted output, €', calculated using
Equation (17), will always be closer to the ground truth e than
the initial estimate @, i.e., ||le—¢€"|| < ||e —¢€|| (where ||- || denotes
the L-2 norm).

We needn’t formally prove the second theorem, as the original
Matrix-R theorem does not limit us to use any particular spec-
tral sensitivity matrix Q for the Matrix-R decomposition. In fact,
the theorem holds for any n x 3 matrix with linearly independent

columns. However, for our proposed correction to work, we need
to ensure the ground-truth fundamental metamer can be calcu-
lated from the RGB (which applies to both Q and Q). The ad-
ditional power of the second theorem is its adoption of the m-
dimensionality assumption. Empirically, at least, it is this as-
sumption that leads to the best pan-sharpening results (see next
section).

4. Experimental Results

We wish to evaluate the three pan-sharpening algorithms in-
troduced in Section 2.3 with our proposed Matrix-R-compliant
post-processing methods (Equation (8) and (17)). Since Imai &
Burns [15] itself includes a Matrix-R process, we regard the re-
sized low-resolution hyperspectral images as €. For CNMF [30]
and Lanaras et al. [19], € refers to the outputs from these algo-
rithms.

To evaluate the algorithms, we use the ICVL hyperspec-
tral image database [2] for our experiments. ICVL consists of
201 hyperspectral images of size 1300 x 1392 (some are slightly
smaller) and 31 spectral dimensions. The spectral dimensions cor-
respond to 10-nanometer sampling intervals between 400 and 700
nanometers. The original images are encoded in 12 bits, i.e., the
maximal pixel value is 4095. We re-scale the encoding range to
[0, 1] by dividing 4095 from the original pixel values.

To evaluate pan-sharpening algorithms, we are to create
high-resolution RGB and low-resolution hyperspectral image
pairs (as inputs to the algorithms) from the original hyperspectral
image (ground-truth target).

For the RGB images, we use the CIE 1964 Color Matching
Functions [10] as the camera spectral sensitivities, i.e., the Q ma-
trix in our derivations. The hyperspectral-to-RGB generation is
calculated per-pixel using Equation (2). The low-resolution hy-
perspectral images are generated by downsizing the original hy-
perspectral images by a factor of § via bilinear interpolation (anal-
ogously, it is as if we have a hyperspectral thumbnail 1/64 the size
of the RGB image).

Experimental results are reported in Table 1. Here, we use
the root-mean-squared error (RMSE) as the evaluation metric,
which is defined as:

/1
RMSE = ;HgfgrecHz’ (18)

where e is the ground-truth and e, is the recovered spectra (either
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Figure 3.  The Original, Matrix-R, and Matrix-R with a lower-dimensional
spectral assumption results in RMSE error heat maps for the three tested
pan-sharpening algorithms.

the original algorithm-recovered one, €, or our corrected ones,
€ and €”). n is the length of the spectral vectors. Clearly, the
RMSE metric is proportional to the L-2 distances considered in
our theorems.

For each image we calculate RMSE at each pixel and record
the per-image mean and 99-percentile RMSE. Then, the presented
numbers in Table 1 are these two per-image statistics averaged
over the whole testing image set in ICVL. For all three tested

pan-sharpening algorithms, we present:
* Original: the performance of the original algorithms
* Matrix-R: performance after applying Equation (8)

e “m dim” (Matrix-R with m-dimensional spectral assump-
tion): performance after applying Equation (17).

A visualisation of the results is shown in Figure 3.

First, let us compare the first two rows of Table 1. Evi-
dently, we see that by applying the Matrix-R-compliant correc-
tion step, we improve both CNMF and Lanaras et al. from their
original performance, in both mean and 99-percentile results. It
is also shown that the direct application of Matrix-R on resized
low-resolution hyperspectral images (i.e., Imai & Burns [15]) is a
readily capable pan-sharpening algorithm, with 46% mean RMSE
improvement from the resized images. Next, we see that Matrix-
R with a 3-dimensional assumption for spectra ensures all three
algorithms perform relatively poorly. In fact all approaches re-
turn the same errors. This is because the 3-dimensional assump-
tion renders the mapping from RGBs to spectra to be one-to-one
[22, 1], and the recovery performance is bounded by the extent
which 3-dimensional models account for spectral variation.

We find that as we continue to increase the assumed di-
mensionality of the spectral data, we can always achieve results
even better than the standalone Matrix-R correction. Indeed, we
see that Imai & Burns with a 4-dimensional assumption delivers
mean performance even better than the original performance of
the much more developed CNMF algorithm. Then, while with

Matrix-R correction alone we have improved the mean perfor-
mance of CNMF by 25%, further with a 5-dimensional assump-
tion, we push the improvement to 30%. Finally, even for Lanaras
et al. which was originally the best-performing algorithm of the
three, with a 9- or 10-dimensional assumption, we bring in 12%
improvement from its original mean and 16% on the worst-case
(99-percentile) performance (though compared to Matrix-R with-
out lower-dimensional assumption the improvement is much less
for this algorithm).

4.1. Discussion

Our proposed Matrix-R-compliant correction procedure
can be applied in a wider context. Indeed, other RGB-to-
hyperspectral recovery approaches, e.g., spectral reconstruction
[3, 4], can also adopt this correction. Advantageously, the pro-
posed process can also be used to enhance the performance of off-
the-shelves “black box™ algorithms where the algorithm source
code is not available. Indeed, our theorems do not require the
knowledge of the algorithm itself—we need only the input RGB
and camera sensitivity information for the Matrix-R decomposi-
tion. Theorem 1 also gives the user comfort. It does no evil: it
will always either improve the performance of any algorithm or,
failing that, it will not reduce the algorithm’s performance (for
Theorem 2 it depends on how well a lower-dimensional assump-
tion works for particular data).

There remain important further questions to be explored in
the future work. First and foremost, it is yet to explain why adopt-
ing a lower-dimensional spectral assumption can further improve
the efficacy of Matrix-R and what it means if a particular dimen-
sion returns the best result. We also observe in Table 1 that for dif-
ferent algorithms the optimal dimensionality assumption varies,
ranging from 4 to 10 dimensions. Lastly, the power of the pro-
posed approach will likely depend on the spectral sensitivity of
the RGB camera used. This is another interesting avenue for in-
vestigation.

5. Conclusion

The Matrix-R theorem teaches that, given the RGB ob-
servation and the spectral sensitivity functions of the sensors,
we can certainly calculate the fundamental metamer component
of the ground-truth spectrum, leaving the residual metameric
black component to be uncertain. On the other hand, hyper-
spectral pan-sharpening algorithms seek to super-resolve low-
spatial-resolution hyperspectral images given their high-spatial-
resolution RGB counterparts. Yet, these algorithms do not guar-
antee the exact reproduction of the fundamental metamers.

In this paper, we showed how the Matrix-R method can be
used to always improve the performance of pan-sharpening and,
indeed, any spectral recovery algorithm: we simply make sure
that it has the correct fundamental metamer. Furthermore, we de-
veloped the Matrix-R method where spectra are represented by a
low-dimensional linear model.

Experiments using three hyperspectral pan-sharpening al-
gorithms show that our proposed Matrix-R-compliant post-
processing always improved these algorithms (often signifi-
cantly). In addition, the low-dimensional linear basis variant of
our theorem was shown to yield the best recovery results.
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