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Abstract 
We consider a method for reconstructing the original HDR 

image from a single LDR image suffering from saturation for 
metallic objects.  A deep neural network approach is adopted for 
directly mapping from 8-bit LDR image to an HDR image.  An 
HDR image database is first constructed using a large number of 
objects with different shapes and made of various metal materials. 
Each captured HDR image is clipped to create a set of 8-bit LDR 
images.  The whole pairs of HDR and LDR images are separated 
and used to train and test the network.  Next, we design a deep 
CNN in the form of a deep auto-encoder architecture.  The 
network was also equipped with skip connections to keep high 
image resolution.  The CNN algorithm is constructed using 
MATLAB's machine-learning functions.  The entire network 
consists of 32 layers and 85,900 learnable parameters.  The 
performances of the proposed method are examined in 
experiments using a test image set.  We also compare our method 
with other methods.  It is confirmed that our method is 
significantly superior in reconstruction accuracy and the good 
histogram fitting. 

Introduction 
Digital cameras can only capture a limited range of 

luminance level in real-world scenes due to sensor constraints.  
High-quality cameras for high dynamic range (HDR) imaging are 
sometimes unaffordable. However, most existing image content 
has a low dynamic range (LDR), and the majority of legacy 
content is predominantly 8-bit LDR images.  Objects in real 
scenes do not always have matte surfaces, and often have surfaces 
with strong gloss or specular highlights.  In such a case, pixel 
values in the captured images are saturated and clipped due to a 
limited dynamic range of image sensors, so physical information 
is missing in the saturated image regions. 

Metals are typical object materials that easily saturate, where 
the luminance of the reflected light from a metal object has an 
extensive dynamic range from matte surface reflection 
component to highlight specular reflection component.  Figure 1 
demonstrates an example from the image data belonging to the 
material category of metal in the Flicker Material Database (see 
[1]-[2]), where the database is divided into 10 material categories, 
such as metal, plastic, fabric, foliage, and so on.  All of which 
consist of 8-bit images.  Figure 1A shows the color image named 
metal_moderate_002_new.  Figure 1B shows the luminance 
histogram in the 8-bit range.  It can be seen that a wide area of the 
metal object surface is saturated.  The color and shading 
information in the saturated image area is entirely incorrect due to 
the missing physical details.  As a result, such attempts as 
appearance reproduction, gloss perception, and appearance 
modeling fail for this object. 

Therefore, a method is needed to infer the original HDR 
image from a single LDR image suffering from saturation, often 
called inverse tone mapping problems [3].  This is an ill-posed 
problem because a missing signal not appearing in a given LDR 

image should be restored [4].  So far, this problem has been 
mainly dealt with in the field of computer graphics [5]-[10] and 
also partly in the field of computer vision [4], [11].  The target 
images are natural scenes, not material objects.  Therefore, the 
captured images contain not only objects but also the sky and 
various light sources. 

This paper considers a method for reconstructing the original 
HDR image from a single LDR image suffering from saturation 
for metallic objects.  A deep neural network approach is adopted 
for directly mapping from 8-bit LDR image to an HDR image. 
We note that there is no publicly available HDR image dataset 
although a few LDR datasets are in widespread use like the flicker 
material database.  Therefore, we first construct an HDR mage 
database specialized for metallic objects.  A large number of 
objects with different shapes and made of various metal materials 
are collected for this purpose.  These objects are photographed 
under a general lighting environment so that strong gloss or 
specular reflection can be observed.  Each captured HDR image 
is clipped to create a set of 8-bit LDR images.  Pair of the created 
LDR images and the original HDR images in the database are 
used to train and test the network. 

We propose a LDR-to-HDR mapping method to predict 
information that has been lost in saturated areas of the LDR 
images.  We design a convolutional neural network (CNN) in the 
form of a deep auto-encoder architecture.  We also equip the 
network with skip connections to make optimal use of high 
resolution image details in the construction.  In experiments, the 
performances of the proposed method are examined in detail and 
compared with those of other methods.  The accuracy of the 
reconstructed HDR images and the superiority in comparison with 
other methods are shown based on validations of numerical error 
and histogram reconstruction. 

 (A)     (B) 
Figure 1 Example from the image set belonging to the metal category in the 
Flickr Material Database:  (A) Color image named “metal moderate 002 
new”.  (B) Luminance histogram of the image in 8-bit range. 

HDR Image Database for Metallic Objects 
We collected a large number of object with different shapes 

and made of different materials.  The material set collected 
consists of a wide range of metal materials such as iron, copper, 
zinc, nickel, brass, aluminum, stainless steel, gold, silver, and 
metal plating.  Painted metal objects are excluded.  The object 
shapes are not only flat plates but also mostly various complicated 
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curved surface.  Figure 2 shows 150 metal objects collected in this 
way.  It is known that light reflection from a metallic object 
consists of mostly specular reflection different from diffuse 
reflection [12].  The color appearing on an object surface is a 
metal color, coincident with the gloss/highlight color.  We note 
that the color at gloss/highlight areas is not white but the metal 
colors seen in Figure 2. 

The metal objects were photographed using a camera of 
iPhone 8.  The camera's depth is 12 bits, and the details including 
the spectral sensitivity functions are shown in Ref. [13].  The 
camera images were captured in a lossless raw image format in 
Adobe digital negative (DNG) format.  The dark response was 
measured and discarded from the camera output. 

The lighting environment at the time of capturing was both 
a LED ceiling lamp and natural daylight through a window, and 
the capturing was devised so that the surface of the metal object 
included glosses or highlights. The images were taken by 
adjusting the shutter speed and lighting conditions to avoid 
saturation in the one-shot mode, and the images were then 
processed as HDR. In a sense, the images were shot with multiple 
exposures. 

Such bright areas in the captured images are highly 
dependent on the position of the object and the camera.  Therefore, 
by shifting their positions, we additionally photographed multiple 
objects with different shading.  Thus, a set of 191 original images 
of metal objects was constructed, where the backgrounds of the 
target objects were erased. 

The original image was resampled to a size of 256×256 
pixels.  For data augmentation, each original image was 
geometrically varied in such a way as (1) image horizontal 
flipping, (2) zoom using the three factors of 1.0, 1.3, and 1.5, and 
(3) rotations with the 13 angles of -90, -75, -60, -45, -30, -15, 0, 
15, 30, 45, 60, 75, 90 degrees.  That is, each original image had 
78 modifications. 

Processes for creating HDR and LDR are summarized as.  
1) HDR creation: The pixel values of the captured original 

image are normalized so that the pixel value of the white standard 
is 1 (8 bits). Then, the inverse gamma transformation is applied 
to compress the normalized images. 

2) LDR creation: The LDR images are created after clipping 
the HDR images and adjusting the final format to 8 bits.  

The captured images take relative values based on a white 
reference standard.  The white reference standard (Minolta, CR-
A43) was photographed with a target object, and then the object 
camera values were normalized using the white reference values.   
If the luminance level of the object is the same as the white 
reference, the pixel value x = 1.0. 

To compress the dynamic range for convenience of data 
processing, we applied a non-linear transformation of inverse 
gamma correction to the pixel values x 

   1/y x γ= ,                                                                     (1)  
where the γ value of 2.0 was used.  Furthermore, the pixel values 
were converted with 255×y to fit the 8-bit LDR range [0, 255].  
Pixel values above this range were saturated into HDR.  When the 
number of saturated pixels was small, we regarded these as noises.  
We also supposed that the saturated areas were not large enough 
to cover the entire object because, in such a case, we could not 
recover the saturated pixels from the single LDR image.  Based 
on this consideration, we calculated the ratio R of the saturated 
area to the total object area in each image.  Then, the saturated 
HDR image set that was effective for the present study was 
adopted by satisfying the conditions 0.04 0.40R≤ ≤ .  The total 

number of HDR and LDR pairs in the image database created in 
this way was 9,855.  Figure 3A plots the average luminance 
histogram in the HDR image database.  The RGB pixel values 
range very widely.  The maximum value of HDR images is 2010.  
Figure 3B shows the average luminance histogram in the 
corresponding LDR image database suffered from saturation by 
clipping into the 8-bit range with maximum of 255.  

 

 
Figure 2 Set of material objects collected from different shapes and made 
of different materials. 

 
(A)                                                   (B) 

Figure 3 Average luminance histograms of the created image database:  
(A) Average HDR image histogram.  (B) The average LDR image histogram 
suffered from saturation by clipping into the 8-bit range. 

Method for LDR-to-HDR Mapping 
We consider a deep-learning approach to automatically 

predict a plausible HDR image from a single LDR image.  
Supervised learning using a deep CNN is performed based on the 
image database previously created.  We design the network in the 
form of a deep auto-encoder architecture.  The entire network 



 

 

designed in this paper is shown in Figure 4.  The LDR input image 
is transformed by an encoder network to produce a compact 
feature representation of the image.  The encoded image is then 
provided to an HDR decoder network to reconstruct an HDR 
image.  Furthermore, the network is equipped with skip 
connections in order to make optimal use of high resolution image 
details in the construction, which is inspired by U-net architecture 
[14].  The green dotted arrows in Figure 4 represent the skip 
connections. 

We used MATLAB's machine learning functions for 
constructing the above designed network.  The layers are 
constructed as 
layers = [imageinputLayers, encodingLayers, 
decordingLayer]. 

The part of encoding layers is described as  
encodingLayers = [convolution2dLayer(3, 8, …), 
reluLayer, maxPooling2dLayer(2, … ,'Stride', 2),   
convolution2dLayer(3, 16, …), reluLayer, 
maxPooling2dLayer(2, … ,'Stride', S), 
convolution2dLayer(3,32, …), reluLayer, 
maxPooling2dLayer(2, … ,'Stride', S), 
convolution2dLayer(3, 64, …), reluLayer, 
maxPooling2dLayer(2, … , 'Stride', S)], 

where convolution2dLayer(N, M, ...) applies M sliding 
convolutional filters with size [N, N] to a 2D input image, and 
reluLayer performs a threshold operation on each element of the 
input, setting it to zero if the value is less than zero, and 
maxPooling2dLayer(N, ..., 'Stride', S) performs downsampling 
by dividing the input into rectangular pooling regions with size 
[N, N] and stride [S, S], and computing the maximum value of 
each region. 

The decoding part is descried in the basic form as 
decodingLayers = 
[transposed_Conv2dLayer(2,64,Stride=2), 

reluLayer, transposed_Conv2dLayer(2,32, 
Stride=2), reluLayer, 
transposed_Conv2dLayer(2,16,Stride=2),reluLayer, 
transposed _Conv2dLayer(2,8,Stride=2), reluLayer, 
convolution2dLayer(1, 3,…), 
clippedReluLayer(1023.0), regressionLayer],   

where transposed_Conv2dLayer(N, M, 'Stride', S) performs 
upsampling to a 2D feature map with M filters of [N, N] size, and 
stride [S, S], clippedReluLayer(T) performs clipping with upper 
limit T, and regressionLayer computes the half-mean squared 
error loss for a regression task.  

The loss function is defined as 
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where {
i

t } are the target values, {
i

y } are the predicted values by 
the network, and R is the total number of observations, that is R = 
256 × 256 × 3 in our case.  The entire network consists of 32 
layers, and the total number of learnable parameters is 85,900.    

The network training is performed in the form as 
net = trainNetwork(ds_train, net_Layers, opts), 

where ds_train indicates the training dataset consisting of LDR 
and HDR pairs and opts specifies several options, including the 
learning algorithm and learning rates.  We use the stochastic 
gradient descent algorithm with a momentum term (SGDM) 
algorithm [15] for network training.  A parameter 

t
θ  at the t-th 

step is updated as 
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where ( )
t

E θ∇  is the gradient of the loss function E, α is the 
learning rate, and the third term is the momentum, and β  
represents contribution from the past. 

The prediction of an HDR image from an input LDR image 
is performed using the trained network in the form as 

 
 
 
 
 
 
 
 
          

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Entire network designed in this paper. The abbreviations of Conv, ReLU, Max pool, and tConv represent the respective operations of 
convolution, rectified linear unit, max pooling, and transposed convolution. The green dotted arrows represent the skip connections. 



 

 

y = predict(net, ds_validation), 
where net is the network trained above and ds_validation indicates 
the test dataset of LDR images for validation 

Experiments 

(1) Performances of the proposed method 
We randomly selected 100 pairs of HDR and LDR images to 

validate the proposed method from the original database, which 
consists of 9,855 pairs of HDR and LDR images.  The remaining 
9,755 image pairs were used as the data for the network training.  
Each pair was presented to the network input and output.  One 
period of presenting the entire training data is defined as an epoch.  
The training was iterated for as many epochs as necessary to 
decrease the mean-square-error to an acceptable level.  The root-
mean-square error (RMSE) was 19.73 for 1,450 epochs. 

Figure 5 shows the test dataset consisting of 100 images.  
The average RMSE was 26.95 only for the saturated areas in these 
test images.  To visually clarify the reconstruction results by the 
proposed method, we further selected three samples from the test 
image set.  Figure 6 compares the input LDR image (left), the 
predicted HDR image (middle), and the original HDR image 
(right) for each sample.  Each image is displayed in a 16-bit tiff to 
avoid saturation.   The LDR images are saturated in the 8-bit range, 
so all LDR images are very dark, and the highlight areas with 
saturation appear gray. 

We note that not only matte areas on the surface, but also 
gloss and highlight areas have the same object color, which is 
metallic.  This characteristic essentially differs from dielectric 
materials such as plastic.   For instance, gloss/highlight areas on 
the predicted images for the first and third samples appear the 
metallic colors of copper and gold.  Thus, we can see that the 
predicted HDR images from the LDR images are well recovered 
close to the target HDR images. 

In addition to the validation using the loss function of RMSE, 
we investigated the histogram distributions of RGB pixel values.  
The sample images are the same as shown in Figure 6.  We note 
that if the pixel values in the predicted HDR image are not 
saturated, the pixel values have the same as the LDR image, and 
also the same as the pixel values without saturation in the original 
HDR image.  Therefore, we should compare the histogram 

distributions in the saturated areas only between the predicted 
images from the LDR images and the target images of the original 
HDR image database.  Figure 7 plots the RGB histograms of the 
predicted and target images in the range of [200, 800] suffering 
from the saturation.  When noticing that the LDR histograms are 
saturated similarly to Figure 3(B), the RGB histograms of the 
predicted HDR images are well recovered for the histograms of 
the original HDR images. 

 

Figure 6 Comparisons of the input LDR image (left), the predicted HDR 
image (middle), and the original HDR image (right) for each of the selected 
samples. 

Figure 7 Comparisons of RGB histograms between the predicted HDR 
image (left), and the original HDR image (right) for each selected sample.  
The respective RGB histograms correspond to the respective sample 
images shown in Figure 6. 

 
Figure 5 Test dataset consisting of 100 images used for validation. 



 

 

(2) Comparisons with other methods 
We randomly selected another test dataset consisting of 10 

images from the test dataset shown in Figure 5.  Figure 8 shows a 
set of HDR images used to compare with other methods. 

The following five methods with algorithms open to public 
use were selected for comparison.  These methods were proposed 
for natural scenes, not limited to metallic objects. 

(1) G. Eilertsen, et al. [7] 
(2) D. Marnerides, et al. [8],   
(3) Y.-L. Liu, et al. [11] 
(4) M. S. Santos, et al. [9] 
(5) B. Masia, et al. [5]. 
We input the LDR images with saturation and executed the 

respective algorithms to reconstruct the HDR images.  Figure 9 
compares the reconstruction results for the first test sample, where 
from left to right, the input LDR image, the proposed method, 
other methods (1) to (5), and the ground truth image are arranged 
in order.  The RMSEs for the first test data are 22.31 for ours, 
67.50 for (1), 63.81 for (2), 82.08 for (3), 78.79 for (4), and 64.57 
for (5).  Table 1 compares the average RMSEs over the whole test 
samples shown in Figure 8.  Thus, it can be seen that the proposed 
method with the RMSE 20.76 is remarkably superior in 
reconstruction accuracy compared to other methods. 
 

Figure 8 Test dataset of 10 images selected for the comparison. 

Table 1 Comparisons between the average RMSEs over the 
whole test samples shown in Figure 8. 

Ours (1) (2) (3) (4) (5) 
20.76 57.96 47.95 51.08 60.55 51.96 
 
Histogram reconstruction is a kind of performance 

evaluation.  Figure 10 compares the RGB histograms of the 
reconstructed images between our method and the other methods 
(1)-(5) in the range of [200, 800].   Compared with the other 
methods, we can see that the histograms of the proposed method 
is smooth and close to the ground truth.  The goodness-fitting 
coefficient (GFC) is useful for evaluating the histogram 
distributions [16] numerically.  This measure is a kind of 
correlation coefficient between the predicted and target histogram 
curves.  Let trueh be a 61-dimensional (D) column vector 
representing the histogram of the target HDR image in the range 
of [200, 800] at 10 steps, and predh be a 61-D column vector 
representing the histogram of the predicted HDR image in the 
same range. 

Then GFC is defined as 

 
. *t

true pred

true pred

GFC =
h h

h h
,  (4) 

where th and h  indicates the matrix transposition and the 
norm of h, respectively, the symbol (. *) represents element-wise 
multiplication.  The GFCs for the first test data are 0.999 for ours, 
0.730 for (1), 0.850 for (2), 0.767 for (3), 0.702 for (4), and 0.635 
for (5).  Table 2 compares the average GFCs over the whole test 
samples.  Thus, the histograms in the proposed method fit the 
original ones. 

 
Table 2 Comparisons between the average GFC over the whole 
test samples. 

Ours (1) (2) (3) (4) (5) 
0.984 0.772 0.795 0.811 0.792 0.712 

Conclusions 
In this paper, we have considered a method for 

reconstructing the original HDR image from a single LDR image 
suffering from saturation for metallic objects.  A deep neural 
network approach was adopted for mapping from 8-bit LDR 
image directly to an HDR image.  We first constructed an HDR 
mage database specialized for metallic objects.  A large number 

 
 
 
 
 
 
 

 
Figure 9 Comparison of the reconstruction results for the first test sample. 

 
Figure 10 Comparison of the RGB histograms between our method and the other methods (1)-(5) in the range of [200, 800]. 



 

 

of objects with different shapes and made of various metal 
materials were collected for this purpose.  We photographed these 
objects under a general lighting environment so that strong gloss 
or specular reflection could be observed.  Each of the captured 
HDR images was clipped to create a set of 8-bit LDR images.  The 
HDR and LDR images were represented with 256×256 pixels.  
The total number of HDR and LDR pairs in the created image 
database was 9,855, separated and used to train and test the 
network. 

An LDR-to-HDR mapping method was proposed to predict 
information that was lost in saturated areas of the LDR images.  
We designed a deep CNN in the form of a deep auto-encoder 
architecture.  The LDR input image was transformed by an 
encoder network to produce a compact feature representation of 
the image.  The encoded image was then provided to an HDR 
decoder network to reconstruct an HDR image.  The network was 
also equipped with skip connections to keep high image resolution.  
The entire network algorithm was constructed using MATLAB's 
machine-learning functions.  The entire network consisted of 32 
layers, and the total number of learnable parameters was 85,900. 

In experiments, we examined the performances of the 
proposed method using a set of test images for validation.  The 
predicted HDR images from the LDR images were well recovered 
close to the target HDR images.  We showed the RMSE values 
and the RGB histogram distributions.  We also compared the 
performances with other methods whose algorithms were open to 
public use.  Our method was significantly superior to the others in 
reconstruction accuracy and excellent histogram fitting. 
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