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Abstract
Colorization of grayscale images is a severely ill-posed in-

verse problem among computer vision tasks. We present a novel
end-to-end deep learning method for the automatic colorization
of grayscale images. Past methods employ multiple deep net-
works, use auxiliary information, and/or are trained on massive
datasets to understand the semantic transfer of colors. The pro-
posed method is a 38-layer deep convolutional residual network
that utilizes the CIELAB color space to reduce the problem’s solu-
tion space. The network comprises 16 residual blocks, each with
128 convolutional filters to address the ill-posedness of coloriza-
tion, followed by 4 convolutional blocks to reconstruct the image.
Experiments under challenging heterogeneous scenarios and us-
ing the Imagenet, Intel, and MirFlickr datasets show significant
generalization when assessed visually and against PSNR, SSIM,
and PIQE. The proposed method is relatively simpler (16 million
parameters), faster (15 images/sec), and resource-efficient (just
50000 training images) when compared to the state-of-the-art.

Introduction
Images represent our visual perception through spatial pat-

terns of brightness, shades, or colors. Many grayscale pho-
tographs were captured before the advent of a color camera and
hence require ”colorization”. Assigning color to an image is
a challenging problem because much information has been lost.
Understanding the image can help guess what color should be as-
signed, like blue to the sea or yellow to the sun. Moreover, the
presence of multiple objects in an image, where each object can
be made up of various colors, makes it a hard problem. Thus,
given a grayscale image, estimating the corresponding color im-
age is an ill-posed inverse problem with many possible solutions.
Learning colorization function with a deep neural network is de-
picted in Fig. 1. Thus, The algorithm must first understand the
image and guess what color can be assigned to parts based on
learned semantics.

State-of-the-art methods typically train the networks with
millions of image pairs to learn the semantics of an image. They
use multiple GPUs to aid with training. This work proposes an ef-
ficient colorization network trained on significantly lesser image
pairs on a readily available GPU. In summary, major contributions
include:

1. A lightweight deep neural network (16 million parameters)
comprised of convolutional residual blocks to learn the col-
orization function.

2. Prototype deep network with just 5% resources (50000 im-

ages) and 2 to 3 times faster colorization (15 images/sec)
yields state-of-art performance.

Figure 1. Ill-posedness in learning image colorization function with a deep

neural network Rn×n 7→ (R×R×R)n×n: For the given illustration, it turns out to

be 3%× (28)
(216) 7→ 3%×

(
(28)

(216)
)3

since statistically about 3% of possible

distinct matrices represent visually meaningful spatial patterns referred to as

the ”images”.

Related Works
There are multiple approaches in which researchers have

attempted to solve image colorization problem. Following is a
quick review of three distinct categories:

1. Reference-based colorization: A grayscale image and a ref-
erence (color) image are presented to a model with very sim-
ilar semantics as in the grayscale image. It attempts to iden-
tify the mapping and assigns colors from the reference to the
grayscale image [17]. Recently, in [8], the authors employ
deep learning to generate multiple reference images and use
them for photo-realistic colorization. Such methods depend
on generated reference images’ availability and/or accuracy.

2. User-defined colorization: The user provides high-level
scribbles that guide the colorization process. An early at-
tempt [9] learns to pass on these scribbles to appropriate
parts of the input grayscale image by optimizing a quadratic
cost function. A promising approach requires the user to
provide color hints to be propagated in algorithm [19]. This
suggests the scribbles to the user or can consider scribbles
from the user to propagate colors to various parts of an im-
age. Such methods rely on the user’s scribbles and/or re-
quire trained individuals to suggest appropriate colors for
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Figure 2. A few results of proposed method in challenging scenarios include colorization of print-and-scan legacy photographs and colorizing natural images

in heterogeneous environments under varying light conditions.

each image. Sugawara et al. [15] introduce a new way to
colorize images by modeling chrominance using a global
graph that connects important pixels and local graphs to con-
nect the global graph to other pixels.

3. Automatic colorization: This is generally achieved by con-
volutional neural networks (CNN) since they capture invari-
ant and equivariant [11] representations from a set of im-
ages. It helps extract semantic information for various im-
age processing tasks, including colorization [2, 16, 18, 20,
14]. Methods in this category involve training CNNs on
massive datasets such as ImageNet. Some models like [2,
16] use pre-trained networks, say, VGGNET and RESNET,
for transferring learned semantics for the colorization task.
In [18], the colorization is formulated as a classification
problem wherein each pixel is assigned one of the 313 col-
ors from the AB color space. An open-source colorization
library [14] uses image-to-image generative adversarial net-
works; the community regularly updates it and serves as a
good reference. Recent approaches like [13] use diffusion
models for image-to-image translation tasks, one of which
includes colorization. Zhou et al. [21] generate multiple
color spaces with some randomness. It shows that good col-
orization can be achieved using a suitable color space.

One may notice that assigning colors to grayscale images
with brightness variations over the foreground and background
in a scene is challenging. It is found that most deep learning-
based approaches either adopt weights from an existing model,
are limited when attempting to colorize multiple objects within an
image, or exhibit inconsistent colorization due to color bleeding
from edges. As shown in Fig. 2, the proposed method found ex-
cellent results in colorizing legacy photographs (print-and-scan),
natural imagery like jungles, mountains, humans, animals, and
birds in the heterogeneous background, and so & so forth.

Proposed Method
In this section, we propose a simple deep neural network for

the colorization of grayscale images and provide its architectural
details along with a discussion on ill-posedness and complex-
ity analysis. We further refer to Occam’s Razor on achieving a

simpler solution among multiple solutions, while achieving state-
of-the-art performance. Given a grayscale image, it performs
perception-consistent automatic colorization without any refer-
ence image and/or without user input for propagating color infor-
mation. We construct an end-to-end deep convolutional residual
network in CIELAB space. As shown in Fig. 3, it is a 38-layer
deep residual convolutional network that uses a grayscale image
(L channel) to estimate corresponding A and B channels [1] (im-
ages). The estimated A and B channels are then combined with
the input grayscale (L) image to construct an estimated color im-
age. The network captures the underlying semantics within the
image to identify the object(s) and/or background and assigns
suitable colors.

The CIELAB is deemed the closest color model of how hu-
mans perceive and process colors in visual scenes [10]. Humans
can visualize the brightness of an image as captured by the L
channel. This is considered the grayscale part of a color im-
age. The A channel captures the red-green while the B channel
captures the yellow-blue space of a color image. Our proposed
method considers the given grayscale image as the L channel and
hence remains to estimate corresponding A and B channels. This
itself is a step towards addressing ill-posedness by reducing the
solution space, while achieving a simpler solution.

Architecture
As shown in Fig. 3, the network first constructs 128 convolu-

tional filters with a 9×9 block size (conv1) to process the input L
channel. The output of the resulting 128 channels is sequentially
passed to 16 residual blocks, which have 128 convolutional filters
each. The output of these residual blocks is given to a convolu-
tional layer with 128 filters with a 3× 3 block size. This output
is then element-wise summed to the output of the conv1. After
this step, the channels are reduced gradually, i.e., 64, 32, 16, and
finally, 2 channels. These are then passed to a sigmoid activation
function to squash the output to values between 0 and 1.

There is a total of 16 residual blocks. A single block (Fig.
3 sidebar) consists of two convolutional layers having 128 filters
with 3 × 3 block size, followed by a batch normalization after
every layer and a parameterized ReLU function [4] after every



layer. The output is element-wise summed up with the input to a
residual block.

Addressing ill-posedness
Comparing the ill-posedness of colorization (Fig. 1) and the

proposed network (Fig. 3), one can see that the use of CIELAB
space has the inherent advantage of the presence of the brightness
channel as an input that permits easier and enhanced estimation
of colors in the reconstructed colorized output image. It helps
to make the colorization a better-posed problem by reducing the
solution space to estimate the remaining 2 channels. Using multi-
ple residual layers in our network helps generate deep contextual
spatial features with its invariant and equivariant representation
properties [11], and hence capture semantic information for col-
orization. The residual blocks enable building the deeper network
with stable training and augment in extracting important shades
or brightness variations to help the colorization process by the
convolutional layers. In addition, the proposed network does not
use pooling layers, which subsample the image, losing finer de-
tails. This results in better semantic transfer of fine-grained de-
tails, yielding natural colorization. Note that our network is end-
to-end compared to recent SOTA methods [8, 15, 13]. A work
in [21] attempts to transfer the information from a global color
space to a gray-scale image with randomness to generate multiple
results. It tests the hypothesis only on two sets of images, bed-
rooms, and churches. On the other hand, we conduct experiments
on print and scan legacy photographs to natural images (humans,
birds, lakes, animals, buildings) in heterogeneous environments
with varying light conditions (Fig. 2). We also conduct ablation
experiments with two different loss functions, i.e., l2 and l1, to
calculate the error between predicted and true AB channels.

Complexity Analysis
It is challenging to assess the complexity of a neural network

directly. However, attempts can be made to quantify [7]. The
number of parameters in a network gives an insight into how much
space it occupies, as it is directly related to the memory. The in-
ference colorization speed (images/sec) helps us understand how
fast a network can process inputs, giving us a hint at the time com-
plexity. In addition, the number of training image pairs indicates
the resource efficiency of a method.

The number of parameters is calculated by summing up the
number of weights and biases in each layer. Here, the inference
speed is the number of images colorized per second. The higher
the speed, the better the performance in real-time applications.

Table 1: Analytical Statistics

Method Network Resource Colorization Speed
# Params (million)
↓

# Training image
pairs (million) ↓

# images/sec↑

Zhang [18] 32 1.3 8
Zhang [19] 34 1 5
Deoldify [14] 42 1.2 3
Proposed Method 16 0.05 15

Table 1 lists the analytical statistics of proposed method and
comparisons with SOTA. We see that the SOTA use the entire
ImageNet dataset with 1.3 Million training pairs. The proposed
method cuts down on that number by using only 50000 images
or 5% of the ImageNet dataset. Along with this, the number of

Figure 3. Proposed 38-layer end-to-end deep convolutional residual neural

network for automatic image colorization in CIELAB.

parameters indicate the space occupied by a model. Referring to
Table 1, the proposed network uses half the number of parameters
to achieve a similar performance. Having lesser parameters and
training images mean that the model can be trained on a relatively
moderate hardware, making the model easily accessible.

Inference speed is further calculated to assess the speed of a
method in many applications. It is clear that higher inference (col-
orization) speed shows a more efficient model. This is inversely
related to the number of parameters and the pre and post process-
ing being done on the images. Keeping the image size constant
(144×144) for all models and the hardware same, we obtain the
number of images colorized per second. One can see from Ta-
ble 1 that the proposed model nearly doubles the inference speed
when compared to the SOTA models. At 15 images/sec, the net-
work can be used in many real-time colorization applications like
video colorization, or it can be deployed on the edge/low powered
hardware for inference at lowered cost.

Invoking Occam’s Razor
State-of-the-art colorization algorithms currently deal with

low-resolution images. Therefore, the available algorithms at-
tempt to fill up the missing details with auxiliary images, mak-
ing the method complicated. On the other hand, in this work, the
proposed algorithm only needs to look at the coarse details to un-
derstand the color semantics. In addition, the major focus is on
the subject of the image, which a convolutional neural network
can isolate. When given enough diverse samples to understand
the semantics of common objects, the proposed colorization al-



gorithm can learn the pattern and guess the color of unseen im-
ages exhibiting similar characteristics. A lightweight network is
employed with far fewer image pairs for training to show that se-
mantic understanding is achieved for this task and the network
produces state-of-the-art results.

Experimental Results
This section presents the results obtained for the proposed

method and compares performance with SOTA methods. For a
fair comparison,The results are compared with end-to-end net-
works [19, 18, 14] for which the weights/codes are available in
the public domain. The proposed network is trained on 50000
images randomly sampled from the ImageNet dataset. The color
ground truths are produced as available in [3, 5, 6]. All images
are resized to 144× 144 for training. The Adam optimizer with
a learning rate 0.0001 is used for 200 epochs. PyTorch is used
as our library for defining and training the network. 1 The per-
formances are assessed with 1000 test images randomly sampled
from the ImageNet, Intel Image Classification, and MirFlickr25K
test datasets. The visual results are shown first and then quantita-
tive comparisons using peak signal-to-noise ratio (PSNR), struc-
tural similarity index measure (SSIM), and perception-based im-
age quality evaluator (PIQE) [12].

Fig. 4 shows visual results of image colorization. Here,
we display 5 grayscale images, their corresponding color ground
truths, and estimated colorized outputs using different methods.
As seen in Fig. 4, the proposed network provides more saturated
colors when compared to SOTA. It generates consistent coloriza-
tion as found in the color ground truth. On a close inspection of
results in Fig. 4, one can see that the proposed model trained with
l1 loss performs visually better colorization than trained with l2
loss. It can also capture minute details while the model trained
with l2 loss has missed. For instance, refer to the bird image in
Fig. 4. It can be observed that the background is not colored com-
pletely in the output of the l2 model. The l1 model can assign the
green background the l2 model missed. Consider another instance
of the tiger image. Other methods produce desaturated colors that
are not similar to the ground truth or the actual color of the tiger.
The proposed method produces the right colors and a saturated
image, making it pleasing to the human eye. It shows that humans
prefer boosted and saturated images to dull images. Referring to
Fig. 4, similar better visual results by the proposed method can
be seen for the lake, human, and building images. One may also
refer to Fig. 2 for more visual results on challenging scenarios.

It is a known fact that quantifying the image quality is chal-
lenging, and one often needs to weigh the measures depending on
the application. Here, we rely on SSIM, PIQE, and PSNR. Ta-
ble 2 lists quantitative comparisons with recent SOTA using three
datasets. It can be seen from Table 2 that the proposed network
outperforms all related SOTA methods. In addition, one can see
that the network trained with the l1 loss model performs better
in SSIM and PSNR, while network trained with l2 loss performs
better with respect to PIQE. Since PIQE is a blind metric assess-
ing human perception using a mean squared implementation, it
is closer to the l2 loss and thus performs better. This is evident
from our experiment conducted with the different losses. Let us

1The weights of the proposed method and more ablation experiments
are available on https://github.com/TanmayAmbadkar/ImageColorNet-
Residual-Colorization.

consider the image of the tiger from Fig. 4. The colors produced
by the reference SOTA methods are dissimilar to the color ground
truth. This reduces their structural similarity and increases the
difference with the ground truth, thus reducing the PSNR. Note
that the proposed simple network, performs consistently better
and addresses the ill-posedness of colorization without needing
any auxiliary information.

Table 2: Quantitative comparisons with end-to-end coloriza-
tion networks

Metric Method ImageNet Intel MirFlickr25
SSIM ↑ Zhang (2017) [19] 0.91 0.95 0.89

Zhang (2016) [18] 0.85 0.93 0.86
DeOldify [14] 0.89 0.91 0.87
Proposed Method (l2) 0.91 0.94 0.89
Proposed Method (l1) 0.92 0.95 0.91

PIQE ↓ Zhang (2017) [19] 13.89 9.65 16.86
Zhang (2016) [18] 13.84 9.77 16.94
DeOldify [14] 13.45 14.59 15.57
Proposed Method (l2) 12.61 8.88 14.97
Proposed Method (l1) 12.76 9.15 15.29

PSNR ↑ Zhang (2017) [19] 23.7 ± 4.3 24.9 ± 5.7 22.9 ± 5.1
Zhang (2016) [18] 21.8 ± 3.4 23.5 ± 3.2 20.9 ± 3.7
DeOldify [14] 21.9 ± 0.1 22.7 ± 3.2 20.9 ± 4.51
Proposed Method (l2) 22.7 ± 3.8 24.6 ± 5.7 22.2 ± 4.5
Proposed Method (l1) 24.2 ± 3.7 25.7 ± 0.1 23.6 ± 6.7

Conclusion and Future scope
This paper has made automatic image colorization a better-

posed problem by presenting a novel 38-layer deep residual net-
work. Compared to existing methods, it is a simpler, faster and
resource-efficient end-to-end network that does not need any aux-
iliary information, and is more suitable for video colorization as
well as in many hardware constrained scenarios. Through visual
inspection and quantitative experiments, it is demonstrated that
the proposed network performs better than current state-of-the-art
methods. We observed that the network trained with the l1 loss
had produced more saturated and pleasing colors, while the net-
work trained with the l2 loss sometimes generated muted colors.
Besides, the proposed network has the potential for generalizing
to other tasks. In the future, one may pretrain the model using
image-to-image and image-to-text tasks to learn better semantic
representations before applying them to colorization.
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