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Abstract
A single tone curve which is used to globally remap the

brightness of each pixel in an image is one of the simplest ways
to enhance an image. Tone curves might be the result of individ-
ual user edits or from algorithmic processing including in-camera
processing pipelines. The precise shape of the tone curve is not
strongly constrained other than it is usually limited to increasing
functions of brightness. In this paper we constrain the shape fur-
ther and define a simple tone adjustment, mathematically, to be a
tone curve that has either no or one inflexion point. It follows that
a complex tone curve is one with more than one inflexion point,
visually making the curve appear ‘wiggly’. Empirically, complex
tone curves do not seem to be used very often. For any given
tone curve we show how the closest simple approximation can
be efficiently found. We apply our approximation method to the
MIT-Adobe FiveK dataset which comprises 5000 images that are
manually tone-edited by 5 experts. For all 25,000 edited images
- where some of the tone adjustments are complex - we find that
they are all well-approximated by simple tone curve adjustments.

Introduction
Tone curves map input values to corresponding output values

by a continuous, almost always increasing, function and are used
for many purposes. A tone curve that describes the mapping of
the real-world scene radiance to measured pixel values is some-
times called a camera response function [1] and is often a linear
map. The inverses of these functions are also used to recover the
scene radiance from an image. Tone curves are applied to map
a large dynamic range of brightnesses that are measured at im-
age capture to the lower dynamic range of a display [2]. Also,
images are generally encoded after the application of a gamma
function (a compressive tone-curve function) because the target
display inverts the gamma when an image is displayed. However,
the predominant use of tone curves - and the one of interest in this
paper - is image enhancement. Simply, a tone curve is applied to
the brightnesses of an input image which maps the brightness to
output counterparts. This tone-mapped output image is - in some
sense - enhanced.

As discussed in [3], an enhancement is only suitable accord-
ing to its purpose and audience, thus there is no single optimal en-
hancement. However, regarding post-processing for photographic
purposes, the hope and expectation are that the enhanced image
is preferred compared to the original image. Many photographers
routinely edit the photographs they capture to reproduce the tones
of the image in a more pleasing manner. Significantly, while a
tone curve can be described explicitly (by drawing a tone curve),
tone adjustments are often implicit: users enhance images through
manual slider-based adjustment, pre-made ‘filters’, or automatic
enhancement tools. Often the effect of these adjustments can be
modelled as the application of a tone curve. Perhaps unsurpris-

ingly, [4] has shown that the ‘best’ tone-mapped image for one
person may not lead to the most preferred image for another.

Tone maps can be applied to all colour channels in an im-
age [5], to the individual colour channels [6, 7] or to a brightness
channel only [8, 9]. In this last approach, while the adjustment
takes place on a brightness channel, the effect is transferred to the
colour image. For example, we might map the brightness chan-
nel of an input image to an enhanced output brightness channel.
Then, per pixel, the ratio of the output over input brightnesses
is applied to each RGB. The result of this operation is to make
an output image that has the same chromaticities as the input but
where the brightnesses have been correctly reproduced (according
to the enhancement). Alternatively, we might map an input image
to the CIELAB colour space [10], enhance the lightness channel,
L*, and map back to RGB. It is this workflow we use in this paper.

There are many techniques employed for enhancing images
[11, 12]. The focus of this work is a global brightness remapping.
Given an input scalar brightness image i(x,y) where the pixels are
indexed using their location x and y, the enhanced output scalar
image,

o(x,y) = f (i(x,y)), (1)

where f is the mapping function. Note also that the inverse func-
tion f−1 will recover the original brightness from the enhanced
counterpart. When the same function is applied to all pixels in
the image, the enhancement is said to be global. When different
functions are applied to different pixels then the mapping would
be local. Almost always, f is an increasing function of brightness.

An example of tone mapping is shown in Figure 1. An in-
put image is shown on the left which produces the image on the
right that has been enhanced with the tone curve shown in the
middle. The brightness image, i(x,y), is the L* channel in the
CIELAB colour space. The curve depicts the enhancement f and
is read that a pixel with a value of 0.3 in the input brightness image
(marked as a ’dot’ in the graph in the Figure) would be mapped to
a value of roughly 0.7 in the output image.

The tone curve in Figure 1 is very simple, showing effec-
tively a single control point at (0.3,0.7). Generally, tone curves
map the entire input brightness range to the same output range,
here the interval [0,1]. The three points (0,0), (0.3,0.7) and (1,1)
are interpolated with a piecewise cubic spline such that the gra-
dient at the control point is continuous to form the smooth curve,
passing through the control point as seen in Figure 1.

In many image manipulation tools, a user might select sev-
eral control points and adjust them independently. A second ex-
ample is shown in Figure 2 with 5 control points and the same
interpolation. Here, the tone curve is ‘wiggly’ and in that sense
complex. Informally, one of the questions we consider in this pa-
per is whether complex (wiggly) tone curves are ever chosen by
users to enhance their images.
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Figure 1. Left, middle and right show respectively, an input image, a tone curve that maps the input brightness to output counterparts and the result of applying

the tone curve. The image is number 635 Expert E’s a* and b* channels.

Figure 2. Left, middle and right show respectively, an input image, a tone curve that maps the input brightness to output counterparts and the result of applying

the tone curve. The image is number 216 Expert A’s a* and b* channels. The green dashed line shows the simple curve approximation and is discussed later.

We propose that simple tone curves have the property that
they have 0 or 1 inflexion point. For monotonically increasing
tone curves (which account for almost all tone curves applied to
images), this means the gradient of a tone curve might be mono-
tonically increasing (e.g. o = i2) or it might increase to the in-
flexion point and then decrease as in an S-shaped curve. Or, the
gradient might decrease monotonically (e.g. o = i0.5) or decrease
then increase at the inflexion point (an inverse S-shaped curve).

In this paper, we look at the tone manipulations made by 5
expert photo retouchers for the same set of 5000 images as made
available in the MIT-Adobe FiveK dataset [8] (hereafter referred
to as FiveK). Each individual manipulation can be the result of
the direct manipulation of a tone curve and adjustments of sliders
including, but not limited to, exposure and contrast. For all 5000
images we found that the effective tone adjustment that these ex-
perts make is simple in the sense that there exists a simple - single
inflexion point - tone adjustment that results in a visually indistin-
guishable output image.

This begs the question as to whether photo-processing tools
should allow (or at least make it easy) for users to make non-
simple tone adjustments. It could be that they are allowing their
users to make adjustments that will not be preferred or, perhaps,
as preferred as a simple adjustment. Equally, would automated
tone-mappers that produced only simple curves deliver preferred
outputs (compared to the more wiggly tone curves that can cur-
rently be delivered by automated methods).

In the Background section, prior work related to the FiveK
dataset is discussed. The Method section discusses the ground-
truth data we use (where each expert’s edit can be interpreted as
a single tone curve adjustment) and presents our algorithm for
approximating any tone curve by a simpler proxy. Experimental
results are presented in the Results section which is followed by
a short Discussion section. The paper finishes with a Conclusion
section.



Background
In this work, we will use the FiveK dataset [8] which com-

prises 5000 photographs from a range of scenes including the
natural world, people, built environment, and man-made objects.
Each photograph has been retouched by five experts, resulting in
25,000 image pairs. Because each expert has edited according to
their preference, the different renditions range from being similar
to markedly different from one another. It is generally proposed
that each expert’s individual edits can be well-approximated by a
single global tone curve.

The FiveK dataset has been used in designing automatic im-
age enhancement algorithms [13, 14] which are constrained to be
global enhancements in [15] and further to be human interpretable
curves in [16].When a tone mapping (or its parameters) is the al-
gorithmic output [5, 6, 7, 17] (as opposed to the image itself) a
tone curve can be determined from a thumbnail of an image and
then applied to the full-resolution image to produce an enhanced
output, reducing computational demand [18].

Curiously, the premise behind the FiveK dataset - that there
is a global tone curve to be learnt - turns out only to apply some-
what approximately in practice (at least for some images). In Fig-
ure 3 we plot input (unedited) versus output (expert-adjusted) L*
lightness values [10] for two image pairs. For the example in the
left plot, the relationship between input and output is clearly al-
most global.

Figure 3. Scatter plot of L* values of the input image against the expert’s

rendition. Left shows image 294 against Expert D’s rendition where the re-

lationship between input and output is well-modelled by a global function.

Right shows image 281 against Expert D’s rendition where the relation is not

well-modelled by a global curve.

A second example is shown in the right plot of Figure 3.
While there is a single global trend the plot has a variety of out-
puts for every single input and this may indicate that some local
processing has been applied (such as highlight recovery) to the
image and/or the colour rendition has changed (e.g. a saturation
boost). Typically, colour changes and spatial processing cannot
be modelled by a tone curve operating on L*.

Of course, any edits made by a photographer will be made
with respect to a particular colour space representation. Should
we expect the input-lightness to adjusted-lightness plot to result in
a one-to-one global curve? After all, if an image is tone mapped,
say where the brightnesses were equal to (R+G+B)/3 (as opposed
to Luminance) then the resulting lightness to lightness plot would
not be global. From informally looking at this issue we found the
L* channel often led to good global tone curves and other colour
encodings led to curves that were less global. This said, the exact

colour space transforms used in mapping input to output images
are not explicitly disclosed in the FiveK dataset.

Method
Dataset

The FiveK dataset images can be downloaded individually
or as an Adobe Lightroom catalogue. We have 5000 input images
and 5 output counterparts for each input (the same image manip-
ulated by 5 experts). Adopting the procedure of [17] (also used
by [6, 15]), the collection Input/Input with Daylight WhiteBalance
minus 1.5 is used as the input images and image pairs are exported
from Adobe Lightroom in ProPhotoRGB. Each image is then con-
verted into the CIELAB colourspace. As discussed earlier, we
will model the tone mapping from input to output brightnesses by
considering corresponding pixel values in the L* channel only.

Generating a global ground truth tone curve
As shown in Figure 3, the relationship between input and

output L* images may or may not be well-modelled as a global
tone curve. However, our analysis of whether simple or complex
tone curves are used to enhance images is only applicable to im-
ages where there is a global tone curve. Let I(x,y), P(x,y) and
PG(x,y) denote respectively an input image, an expert adjusted
output and an approximation thereof. For the purposes of this pa-
per, the relationship between these three images is summarised
as:

I = [L∗
I a∗I b∗I ]

⊤

P = [L∗
P a∗P b∗P]

⊤

PG = [ f (L∗
I ) a∗P b∗P]

⊤
(2)

where, for a single given pixel, I, P and PG are 3-vectors, drop-
ping the spatial dependence on (x,y). The function f denotes a
tone curve that approximately maps L∗

I to L∗
P. Here and through-

out the superscript ⊤ denotes the transpose operator. We found
that for defining f using histogram matching, the images P(x,y)
and PG(x,y) were almost always visually indistinguishable. Fig-
ure 4 shows an example of an input image I(x,y), the expert ad-
justed output P(x,y) and our global approximation PG(x,y).

The tone-curve f () is defined by k uniformly spaced quan-
tiles [0,1/(k − 1),2/(k − 1), ...,1]⊤ relating the L* image for
the input and expert edited images [3]. The quantile-to-quantile
plot can then be used to interpolate any input control points
[19]. Thus, for the 100 uniformly spaced input L* values
that we use to define tonality [0,1/99,2/99, ...,1]⊤, we cal-
culate the outputs of the tone curve as the 100-vector f =
[ f (0), f (1/99), f (2/99), ..., f (1)]⊤. That is, we assume the
equivalence:

f ≡ f () (3)

For the rest of this paper we assume that the ground
truth tone-mapping output for the FiveK dataset are the images
PG(x,y).

The key concern of this paper is to consider to what extent
tone curves applied to images are or are not simple (see next sec-
tion for definition). Thus, we will seek to find an approximate
tone curve, f̂ such that

f̂ ≈ f, where the shape of f̂ is constrained to be simple (4)



Figure 4. Left, middle and right show respectively, an input image, I(x,y); the expert’s rendition, P(x,y); and the global approximation, PG(x,y). In this example,

image 1925 and Expert C are shown.

Simple Tone Curves
Tone curves f are surjective increasing functions - that is, if

b j ≥ bi then f (b j) ≥ f (bi) - where the input and output values
are (typically) defined on the interval [0,1]. As we discussed in
the introduction, we have an expectation that tone curves are ad-
ditionally simple in some sense: we do not expect the tone curve
to be wiggly. See, Figure 2 in the introduction. Wiggly here, intu-
itively, means that there are only so many ‘turns’ in the tone curve:
the more it looks like a series of steps the more wiggly it is. In
part, we feel that wiggly tone curves should not be used because,
from the user’s viewpoint, they seem to be difficult to define (and
although they can be defined they may be difficult to replicate).

We define simple tone curves to be increasing functions that
have no or only a single inflexion point. In terms of the derivatives
of the tone curves, this means they are increasing to the inflex-
ion point and then decreasing (or the converse) or have a strictly
increasing or decreasing derivative. For a given tone curve rep-
resented by a vector f - which may have more than one inflexion
point - we would like to find an approximate tone-curve f̂ that is
simple and as close as it can be to f. Clearly, to do this will in-
volve solving an optimisation and part of this optimisation will,
perforce, involve the calculation of discrete derivatives.

Let us define a square matrix D to calculate the derivative
(here discrete differences) of a vector:

D ≜



−1 1 0 · · · 0 0 0
−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


, (5)

Notice that the first two rows are the same. This is because
we need to make a statement about what the derivatives are at
the boundary of the domain. By replicating the first two rows,
we are assuming that the gradient is constant here (we adopt the
so-called homogeneous Neumann boundary conditions). Given
that our tone curves are represented by 100 component vectors
the matrix D is 100× 100. Using the subscript i to index the ith
term in a vector, we see that,

[Df]i = fi − fi−1, for i ∈ [2,100]
[Df]1 = [Df]2

(6)

Our concept of inflexion point is defined in terms of increas-
ing and decreasing first derivatives. Equivalently, a positive sec-

ond derivative indicates an increasing gradient and a negative sec-
ond derivative indicates a decreasing gradient. A second deriva-
tive is simply the derivative of the first derivative. Our second
derivative operator is denoted D2 and is defined:

D2f ≜ D(Df) (7)

We are going to solve for the best simple approximate tone
curve f̂i for 4 cases, i = 1,2,3,4. Then the best tone curve overall
will be the one that is closest to the original curve:

argmin
f̂∈S

||f̂− f|| , S = {f̂1, f̂2, f̂3, f̂4} (8)

Each of our 4 minimisations is formulated as the problem of
finding the closest approximation to a given tone curve subject to
the constraints that the tone curve is between 0 and 1 and also that
it is increasing. Thus, the first part of each optimisation is written:

Ji = argmin
f̂i

||f̂i − f|| s.t. 0 ≤ f̂i ≤ 1, Df̂i ≥ 0. (9)

Then the constraints on the second derivative are considered
to yield the 4 minimisations. Case 1: gradient increasing (no in-
flexion point)

argmin
f̂1

J1, D2 f̂1 ≥ 0 (10)

Case 2: gradient decreasing (no inflexion point)

argmin
f̂2

J2, D2 f̂2 ≤ 0 (11)

Now let us consider the case where there is an inflexion point.
The inflexion point λ , is an integer in [2,99] (any point in the tone
curve other than the first and last). Let us use f[1,..,λ ] to denote the
first λ terms in the vector and f[λ+1,..,100] to denote the remaining
vector components.
Case 3: gradient increasing then decreasing (one inflexion point)

argmin
f̂3, λ∈[2,99]

J3, [D2 f̂3][1,..,λ ] ≥ 0, [D2 f̂3][λ+1,..,100] ≤ 0. (12)

Case 4: gradient decreasing then increasing (one inflexion point)

argmin
f̂4, λ∈[2,99]

J4, [D2 f̂4][1,..,λ ] ≤ 0, [D2 f̂4][λ+1,..,100] ≥ 0. (13)



Each of these objective functions characterises the best ap-
proximate tone curve f̂ as the one that minimises a mean er-
ror (sum of squares) norm subject to linear inequalities. Thus,
each minimisation is precisely a quadratic program which can be
solved efficiently and for which a global optimum is found [20].
For a single tone curve we need to carry out Case 1 and Case 2
minimisations and then, for every inflexion point λ , 98 variants
of Case 3 and Case 4. Over all of these 198 minimisations (for
each of which a global optimum is found) we choose the f̂ that is
closest to f, Equation 8.

When we apply the solved for tone curve, f̂, to an input im-
age, I(x,y), we generate an output P̂(x,y). Remembering that we
can interchange a continuous tone-curve f by its vector represen-
tation f and adopting the notation of Equation 2, per pixel,

P̂ = [ f̂ (L∗
I ) a∗P b∗P]

⊤ (14)

which should be close to the ground-truth, P̂(x,y) ≈
PG(x,y). We examine the extent to which this is true in the next
section.

Results
For each input image I(x,y) we have the actual output image

P(x,y) which is the result of an expert’s image edits. However,
this pair of images are not exactly related to one another by a
global tone curve and we would like there to be such a relationship
to test our method. Thus, for ground truth images, we use PG(x,y)
formed using Equation 2.

Of course, we should only use this approach if, visually,
PG(x,y) looks like P(x,y). To test this, for all 25,000 images
(5000 input images adjusted for preference by 5 experts) we cal-
culate the mean CIELAB colour difference, ∆E, between the ac-
tual adjusted output P(x,y) and our ground truth PG(x,y) as the
Euclidean distance of their L*a*b* coordinates; the results are
summarised in Table 1. We find 50% of our data has a mean ∆E
of less than 0.36 and even the 0.99 quantile is only 1.88 (visually
not noticeable in images [21, 22]). The maximum mean ∆E is 10
but this is an outlier; all of the remaining 24,999 images have a
∆E less than 4. Henceforth we use PG(x,y) as our ground truth.

Table 1: Quantile mean ∆E between P(x,y) and PG(x,y) (25,000
images)

Quantile 0.5 0.9 0.95 0.99 1
Mean ∆E 0.355 0.598 0.928 1.88 10.1

Now we have pairs of input and output ground truth images
where the Lightness channel of the output image is precisely a
tone curve from the input lightness channel. We can now con-
sider the extent to which these tone curves are simple or complex.
For every input-output pair, we have the actual groundtruth tone
curve f that is used to map input to output and we can calculate the
approximate simple curve, f̂ using Equation 8. We use this sim-
ple (zero or no inflexion point) tone curves to generate an image
P̂(x,y) that is an approximation to the ground truth.

Let us consider again the ‘wiggly’ example from the Intro-
duction shown in Figure 2. The green dashed line shows the sim-
ple tone curve obtained by our method. The simple curve is close
to the original wiggly curve but without the wiggles. The images
produced by the simple green dashed line and the original wiggly
black line have a mean ∆E difference of 1.94.

In Figure 5, we show some qualitative visual results. In the
left column, we show 4 input images I(x,y) (before adjustment by
the expert). We show the expert ground truth rendition, PG(x,y),
in the second column and the simple tone curve approximation,
P̂(x,y), in the third column. Clearly, the corresponding images
in columns 2 and 3 are very similar to one another and both are
preferred to the input. In the right column we plot, in blue, the
ground-truth tone-curve and in dashed red the best simple tone-
curve approximation.

Evidently, as we move from top to bottom in the fig-
ure the tone curves become more complex (and are less well-
approximated by our simpler curve). In fact, these images were
explicitly chosen to represent the results. In terms of the mean ∆E
between ground truth and simple tone-mapped images, from top
to bottom the images shown represent respectively the 0.5, 0.95,
0.99 and 1 quantile ∆E. The corresponding mean ∆E (calculated
between the simple image output and the ground truth) are given
in Table 2

Table 2: Error statistics of the images shown in Figure 5.
Image Mean ∆E Quantile mean ∆E
D4754 0.0116 0.5
B4737 0.135 0.95
C245 0.768 0.99
E4122 4.00 1

Now, we consider how well a simple tone curve can approx-
imate the ground truth for the whole FiveK dataset. For each of
the 5 experts, over their 5000 edits, we calculate the mean ∆E be-
tween the simple tone curve approximation and the ground truth.
We calculate the errors for the quantiles 0.5, 0.9, 0.95, 0.99 and 1
and these are tabulated in Table 3. In all cases, at the 0.99 quan-
tile, the mean ∆E to the ground truth is less than or close to 1
indicating that the ground truth and simple tone-mapped images
are visually indistinguishable. Even the maximal errors are mod-
est. There is only one image for the 5th expert (labelled E) where
the approximation is 4. Even in this case, the images are visually
very similar (and are likely not appear to be visually significantly
different [21, 22]). Not reported here, we find no preference dif-
ference for images rendered by simple or complex curves (even
for the hardest approximation cases).

Table 3: Quantiles of the mean ∆E per expert.

Quantile A B C D E
0.5 0.0159 0.0157 0.0169 0.00694 0.00799
0.9 0.178 0.131 0.218 0.0957 0.0744

0.95 0.321 0.202 0.382 0.181 0.141
0.99 1.09 0.457 0.971 0.534 0.638

1 3.84 2.01 3.26 2.04 4.00

The images edited by each expert can be quite different from
one another. Thus, per image, we calculate the median ∆E for
the 5 adjusted outputs and then calculate the quantile errors for
these median adjustments. The results of this experiment are re-
ported in Table 4. The maximum median error here is less than
1. Thus, on average (for 5 experts) a simple tone curve well-
approximates (renders an image visually indistinguishable from
the ground truth) the actual tone-adjustments made to images.



Figure 5. Example visual results. First column shows the input image I(x,y), next is the ground truth image PG(x,y), then the approximated simply enhanced

image P̂(x,y) and right shows the two tone curves that gave these enhancements.

Table 4: Quantiles of the ∆E values for the median adjustment.
Quantile 0.5 0.9 0.95 0.99 1

∆E 0.0105 0.0675 0.107 0.277 0.958

Discussion
For a very large dataset of enhanced images, the tone adjust-

ments made are either simple tone curves (defined in this paper as
having no or a single inflexion point) or can be well-approximated
by simple curves. This could be a significant result for tone ad-
justment in general. First, many photo-editing tools give the user
the freedom to make non-simple tone adjustments. Is this wise
if professional photographers never make these kinds of adjust-
ments? Perhaps wiggly tone curves should only be available as
an ‘advanced’ option. Second, if we assume tone manipulations
should be simple then this constraint should be incorporated into
automated tone mapping algorithms. Existing prior art like Con-
trast Limited Histogram Equalisation [23, 24] can produce quite
wiggly curves.

Conclusion
Tone mapping is a very powerful technique for image en-

hancement and is a key part of the toolset in photo editing soft-
ware as well as being implemented in every photographic camera
pipeline. In this paper, we considered whether tone mappings
made by users are simple or complex. Simple tone curves were
defined to be monotonically increasing curves that either have no
or one inflexion point. Conversely, complex curves are those that
cannot be simply defined. A computational method is presented to
find the best simple tone curve that approximates a complex tone
mapping. Experiments conducted on a large set of 25,000 manu-
ally tone adjust images found that the tone adjustments made were
either simple or that they could be well-approximated by a simple
curve adjustment.
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