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Abstract
Grayscale images are essential in image processing and

computer vision tasks. They effectively emphasize luminance and
contrast, highlighting important visual features, while also being
easily compatible with other algorithms. Moreover, their simpli-
fied representation makes them efficient for storage and transmis-
sion purposes. While preserving contrast is important for main-
taining visual quality, other factors such as preserving informa-
tion relevant to the specific application or task at hand may be
more critical for achieving optimal performance. To evaluate and
compare different decolorization algorithms, we designed a psy-
chological experiment. During the experiment, participants were
instructed to imagine color images in a hypothetical ”colorless
world” and select the grayscale image that best resembled their
mental visualization. We conducted a comparison between two
types of algorithms: (i) perceptual-based simple color space con-
version algorithms, and (ii) spatial contrast-based algorithms,
including iteration-based methods. Our experimental findings
indicate that CIELAB exhibited superior performance on aver-
age, providing further evidence for the effectiveness of perception-
based decolorization algorithms. On the other hand, the spatial
contrast-based algorithms showed relatively poorer performance,
possibly due to factors such as DC-offset and artificial contrast
generation. However, these algorithms demonstrated shorter se-
lection times. Notably, no single algorithm consistently outper-
formed the others across all test images. In this paper, we will
delve into a comprehensive discussion on the significance of con-
trast and luminance in color-to-grayscale mapping based on our
experimental results and analysis.

Introduction
Grayscale images are widely used in various applications

such as cost-efficient printing, medical displays, and e-ink de-
vices. Many image processing algorithms, originally designed for
color, are used with grayscale images to reduce memory and time
complexity. However, this transformation leads to loss of infor-
mation and as a result can reduce the range of the final resulting
images as compared to the original. Decolorization methods com-
pute grayscale images using luminance values from the source
pixels [1, 2]. Figure 1 presents few decolorization examples from
which we can learn their capabilities and limitations. The WCCD
algorithm (warm-cool color-based decolorization) [3] is show-
cased in the middle row of Fig. 1, demonstrating its effectiveness
in maintaining perceptual qualities. In contrast, (a) Kim et al. [4]
exhibit a loss of chromatic contrast, (b) Nafchi et al. [5] mishan-
dle variations in luminance, (c) CIELAB fails with isoluminant

colors, and (d) Lu et al. [6] struggle with specific color combi-
nations in the bottom row. Recent algorithms promise detailed
grayscale output [2]. However, they require more resources and
time due to iterative processes thus, being unsuitable for practical
real-time applications like video and printing. Decolorization al-
gorithms aim to preserve color contrast in grayscale images, but
this doesn’t always optimize their performance in other image
processing applications. Kanan and Cottrell studied the effect of
grayscale images for image recognition application, and they con-
clude that the recognition performance is significantly affected by
the underlying grayscales [7].

In this paper, we present the results of a comprehensive psy-
chological experiment evaluating six distinct decolorization algo-
rithms. Our evaluation includes three perception-based prepro-
cessing methods (CIELAB, YCbCr, and WCCD [3]) and three
spatial contrast-based algorithms ([6, 5, 8]). Our study under-
scores the pivotal roles played by contrast and luminance in the
generation of grayscale images. Contrast and luminance preser-
vation are crucial for maintaining visual quality when transition-
ing from color to grayscale. We chose not to include learning-
based color-to-grayscale algorithms due to their black-box nature,
which makes it challenging to understand the decision-making
process behind color-to-gray mapping. Our findings reveal that
perceptual algorithms excel in scenarios with limited color vari-
ance, where high color variance indicates a wide range of col-
ors in the source image, whereas low color variance implies a
more restricted color palette. Decolorization algorithms need to
handle these variations appropriately to generate visually pleas-
ing grayscale representations. Moreover, these perceptual meth-
ods offer simplicity, minimal parameter settings, and adaptability,
making them valuable for video applications. This paper bridges
the gap between perceptual quality and grayscale conversion tech-
niques, enhancing our understanding of image processing appli-
cations.

Related Works
Mapping 3D color information onto a 1D grayscale image

while preserving the original appearance, contrast, and finest de-
tails is a non-trivial task, as depicted in Fig. 1. There are several
established methods for converting a color image into a grayscale
one, and they can be categorized based on their mapping tech-
niques (global and local methods), color space (RGB, LAB), com-
putational complexity, and optimization methods, as reported by
Akbulut et al. [1]. While our primary focus in this work is on
non-neural network-based methods due to concerns about their
black-box nature, it’s worth noting that there have been notable
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Figure 1. Evaluation of Decolorization Algorithms: (Top Row) Original Color

Images, (Middle Row) Grayscale Images Converted Using a Perceptual Al-

gorithm [3], (Bottom Row) (a) Kim et al. [4] - Demonstrating Loss of Chro-

matic Contrast. (b) Nafchi et al. [5] - Highlighting Mishandling of Variations

in Luminance. (c) CIELAB - Illustrating Failure with Isoluminant Colors. (d)

Lu et al. [6] - Displaying Inability to Handle Specific Color Combinations.

developments in learning-based color-to-gray algorithms. Convo-
lutional Neural Networks (CNNs) have made notable strides in
the field. Recent works include Cai et al.’s approach using a per-
ceptual loss function [9], Zhang et al.’s CNN framework for com-
bining local and global features [10], and Lin et al.’s use of par-
tial differential equations (PDEs) for mapping color to gray [11].
However, they often face challenges related to control, computa-
tional complexity, and cost. These learning-based methods aim to
generate high-quality grayscale images but come with their own
set of limitations.

Luminance is fundamental to the human visual system, and
several studies in the past have established that our visual acuity
is dependent on changes in luminance [12]. Luminance also plays
a significant role in perceiving a scene as natural [13]. Choi et al.
define naturalness as the level of resemblance between the pho-
tograph and the memories of real-life scenery [14]. Additionally,
Jiang et al. define naturalness as an image attribute based on the
differences between normal exposure images and over-exposed or
under-exposed images. To calculate their proposed tone mapping
image quality metric, they compute the naturalness value based
on luminance and yellow values [13]. Luminance of an image
can be measured from the pixel intensity, and in our experiment,
we make use of the simple mean of the image as given by Eq. 1.

Luminance =
1

M×N

M

∑
i=1

N

∑
i=1

(Ii, j) (1)

Additionally, it’s important to consider video decolorization, a re-
lated field with practical applications. Several video decoloriza-
tion methods have been proposed in the past [15, 16, 17]. Tao et
al. [17] introduced three different decolorization strategies (low-
proximity, median-proximity, and high-proximity) with varying
computational costs and decolorization qualities. These methods
address the unique challenges of converting video sequences into
grayscale while preserving important visual information and offer
insights into the complexities of real-time applications, which can
be relevant to the field of image decolorization. This comprehen-
sive overview of related works sets the stage for our discussion

Figure 2. Our psychological experimental setup: (a) Participant preparing

for the test. (b) Sample test display from our experimental dataset showing

six grayscales surrounding the color image.

on contrast, luminance, and their significance in grayscale image
generation.

Psychological Experiment, Analysis and Re-
sults

We conducted a thorough psychological experiment and an-
alyzed the results. The experiment provided valuable insights into
the performance and effectiveness of different decolorization al-
gorithms. We believe the findings can guide readers in selecting
appropriate algorithms for specific applications and contribute to
the advancement of color to grayscale techniques.

Setup, materials & design
We designed a MATLAB R2020b and Psychtoolbox

(3.0.17)-based paired comparison graphical user interface (GUI)
on an Ubuntu platform. GUI was used to display images and
record participant’s observations (image selection and times-
tamp). Our test images were loaded into computer memory and
randomly generated pairs were displayed. The experiments were
performed in a darkened room. The display monitor employed in
our experiment was the EIZO EV3285 (3840 × 2160), and the
viewing distance was fixed at 50 cm (viewing angle ≈ 34.92◦).
The monitor was calibrated with a gamma setting of 2.2 and a
white point calibrated to 6500K. Additionally, the brightness was
set to 120. All the images used in our study were encoded in the
RGB color space In order to avoid any artifacts due to head move-
ments, we gently stabilized the participant’s head position by us-
ing a chin and forehead rest as shown in Fig. 2. The 53 test im-
ages for our experiments were selected from references [6], [18]
and royalty free images from the internet. We recruited 54 naive
observers (26 females, 28 males) aged between 22 to 50 who had
normal or corrected-to-normal 20/20 vision from our university
faculty, staff, graduate and undergraduate students’ community.
The average time required to complete the test was about 21 min-
utes, and for their participation time all the participants were re-
munerated as per the university regulations. The only instruction
we gave to the participants was to mentally visualize the presented
color image in a “colorless world” and pick one grayscale im-
age from the six different grayscale images (CIELAB, YCbCr,
WCCD [3], Lu et al.[6], Nafchi et al.[5], Liu et al.[8] which re-
sembles it the most.

Methodology and Hypothesis Testing
Our experiment was conducted in accordance with our uni-

versity’s Code of Ethics regulations. The participants gave an in-



formed and written consent to contribute to the experiment. A
pretest examination was carried out to check for any color blind-
ness among the participants using Ishihara test and one participant
was excluded from the experiment due to color vision deficiency.
During the psychological test when a participant chose a grayscale
image it was scored 1, and the other 5 images were scored 0.
Participants compared a color test image (at the center) with the
six decolorized images (surrounding it), each of which were pro-
cessed by a different algorithm. The participant response data
were stored as a MATLAB data type struct with fields record-
ing participant number, observation table (53×12) date and time
of the experiment. The order, and location of grayscales were
randomized to avoid any location-based bias and this information
were stored in our observation table along with the user response
time.

In our paper, we have chosen algorithms for its distinct
approach to color-to-grayscale conversion. CIELAB employs
the CIELAB color space, focusing on perceptual uniformity and
color-based conversion. YCbCr (MATLAB: rgb2ycbcr) utilizes
a color space-centric approach and is commonly used in image
and video processing. WCCD utilizes a customizable luminance
calculation through adjustable bias parameters based on warm-
cool colors [3]. Lu et al.[6] delves into contrast-preserving decol-
orization with an emphasis on global mapping methods. Nafchi
et al.[5] introduces a unique correlation-based approach, consid-
ering both color contrast and correlation. Lastly, Liu et al.[8]
adopts log-Euclidean metrics to preserve contrast during decol-
orization. These chosen methods collectively provide a compre-
hensive range of grayscale conversion techniques, facilitating a
thorough evaluation across various applications, including per-
ceptual quality assessment and video analysis.

We recorded 17,172 participant responses as 54 observers
evaluated 53 images and their corresponding 6 grayscales. We
analyzed the experimental data for all the color images individ-
ually and performed χ2 test(goodness of fit) [19] to show that
the participants choices were not random (i.e. all six grayscale
images are equally likely to be chosen). The null hypothesis
(H0) of this test was that “all grayscales were preferred equally”,
a scenario when the participants cannot tell the difference be-
tween grayscales, and/or, the images are all equally good. The
alternative hypothesis (H1) was “all grayscales are not preferred
equally”, and the choice distribution was dependent on the per-
ceptual quality of the grayscale image. For example, if the
CIELAB grayscale transformation is consistently favored for a
given test image, while the YCbCr transformation is never cho-
sen, it provides a hint regarding the characteristics of an “effec-
tive” color-to-grayscale conversion.

In Fig. 3, we present two test images and their grayscale con-
versions along with computed χ2 test statistics. The test statistic
is computed using Eq. 2, where observed frequencies (Oi) rep-
resent user choices, and expected frequencies (Ei) indicate equal
preference for all grayscale algorithms.

χ
2 =

k

∑
i=1

(Oi −Ei)
2

Ei
(2)

For instance, in the case of the red flower image (Fig. 3a), we ob-
served χ2 = 26.77, rejecting the null hypothesis. This indicates
that grayscales were not equally preferred, with a significant pref-
erence for one or more algorithms. The degree of freedom (d f )

Figure 3. Grayscale Conversion Variability [(a) WCCD [3] (b) Nafchi et

al.[5] (c) CIELAB (d) Liu et al.[8] (e) Lu et al.[6] (f) YCbCr]: Top Row - Typical

case with a red flower image χ2 = 26.77. Bottom Row - Challenging case

with a weather-degraded train image in foggy conditions, χ2 = 2.33, thereby

resulting in acceptance of our null hypothesis (H0).

Figure 4. Participants with quick response times in seconds overwhelm-

ingly preferred spatial contrast-based algorithms. User response times are

arranged in ascending order, indicating the speed of decision-making.

for this test is calculated as 5 (i.e., k− 1), where k represents the
number of grayscale algorithms. To determine whether the χ2

values were statistically significant, we compared them with crit-
ical χ2 values for the 95th percentile (χ.05

2) and 99th percentile
(χ.01

2) at d f = 5. Since the calculated χ2 exceeded both χ.05
2

and χ.01
2, we rejected the null hypothesis at both p < .05 and

p < .01 levels, indicating that participant choices were not ran-
dom but influenced by grayscale quality. However, one image
(Fig. 3f) yielded a χ2 = 2.33, leading to the acceptance of our
null hypothesis. We attribute this result to the image’s complex
scene content and a lack of clear cues, making it challenging for
participants to distinguish grayscale quality effectively.

Results & discussion
Several methods have been proposed to measure contrast,

beginning with a simple ratio between maximum and minimum



luminance of the scene, and choice of other metrics (like Weber
contrast, Michelson contrast, and RMS contrast) depending on
the end application. In this study we use RMS contrast which
measures the standard deviation of pixel intensities and does not
depend upon the spatial frequency content [20]. For an M ×N
image the RMS contrast is computed using Eq.3 where Ii, j is the
i-th, and j-th pixel intensity and Ī is the average intensity of the
image.

RMScontrast =

√√√√ 1
M×N

M

∑
i=1

N

∑
j=1

(Ii, j − Ī)2 (3)

We recorded the participants response (reaction) time, measur-
ing the time it took for the observer to make a selection after the
stimulus was presented. Upon arranging their response times in
ascending order, we observed an interesting pattern, as shown in
Fig. 4. We can clearly notice that the participants who made
quick choices, preferred grayscale images generated by spatial
contrast-based algorithms. We know that these algorithms em-
ploy techniques to enhance contrast, which can be lost during the
dimensionality reduction process (color to gray). As a result, the
grayscale images produced by these algorithms often exhibit high
contrast, well-defined edges, and distinct textures, thereby im-
proving visual salience. This relationship between contrast and
salience has been studied by Cheng et al. [21]. The presence of
good structures and edges in an image can improve the perceptual
organization of visual objects, and this has been studied by El-
der and Zucker [22]. Furthermore, studies by Itti et al. [23] have
reported that images with enhanced contrast, salient regions, and
easily recognizable objects can lead to faster recognition.

Our findings align with these studies and suggest that spa-
tial contrast-based decolorization algorithms, emphasizing con-
trast enhancement, lead to quicker decision-making. However,
this contrast-based approach compensates for this loss by intro-
ducing artificial contrast, as demonstrated in Fig. 5. This figure
illustrates the relative contrast difference between input and out-
put concerning user selection. The selection ratio curve represents
the average rate across all images under the current contrast level.
Since we used six algorithms, the average selection ratio is 1/6.

Nonetheless, spatial contrast-based algorithms may inadver-
tently emphasize details to the point of creating an exaggerated
effect. In contrast, perceptual algorithms (CIELAB, WCCD, and
YCbCr) avoid this by preserving the original contrast informa-
tion. However, it’s important to note that these claims are cur-
rently speculative. To investigate this hypothesis further, one po-
tential approach is to filter the image using spatial bands, which
would enable us to either confirm or refute this idea easily.

In Fig. 6 we plot the luminance difference between the in-
put, output, and also include the reference to user selection rate.
From this plot we can observe that the simple color space con-
version algorithms retain the original luminance thereby invoking
natural-like feeling, whereas the spatial contrast-based algorithms
perform a DC-offset removal like operation. Mapping a light red
kite tail with a sky blue background to darker shades of gray may
be considered unnatural or undesirable in terms of preserving the
visual appearance of the original scene as illustrated in Fig. 7(d),
(e), and (f). Grayscale images aim to represent the intensity or
luminance information of the original colors, and mapping a dis-
tinct color combination to a significantly darker shade may result
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Figure 5. This visualization offers insights into user preferences and the dis-

tribution of output images based on relative RMS contrast. Spatial contrast-

based methods enhance contrast in grayscale images. The left Y1-axis rep-

resents the curve plot, while the right Y2-axis represents the bar plot.
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Figure 6. This plot illustrates the impact of relative luminance on decol-

orization methods. Spatial contrast-based methods, as shown here, tends to

neglect the significance of luminance and exhibit operations similar to DC-

offset removal (see Fig. 7 for more details).

in a loss of information and visual fidelity. This suggests that the
decolorization algorithm is not able to accurately capture the rel-
ative luminance values of the original colors, and it also indicates
a limitation or deficiency in the algorithm’s ability to handle spe-
cific color combinations or variations in luminance.

Exploring color variance and video decolorization
analysis

In the following discussion, we compare the two decoloriza-
tion methods: spatial contrast-boost algorithms and perceptual
color space-based decolorization, with a specific focus on color
variance and video decolorization. From our analysis, we find
the unique characteristics and implications of each method in ad-
dressing these aspects.

Measuring Color Variance: To assess color variance, we
compute the standard deviation of color values within an image.
This metric evaluates color variation across the image, assum-



(a) (b) (c)

(d) (e) (f)

Figure 7. Comparison of DC-offset removal in color-to-grayscale conver-

sions using perceptually satisfactory simple color space algorithms (a, b, & c)

and spatial contrast boost algorithms (d, e, & f). (a) WCCD [3], (b) CIELAB,

(c) YCbCr, (d) Nafchi et al. [5], (e) Liu et al. [8], and (f) Lu et al. [6].

Figure 8. The scatter plot reveals that simple color space conversion al-

gorithms exhibit better luminance preservation in grayscale images with low

color variance, compared to spatial contrast-boost algorithms. This finding

underscores the importance of considering the color variance in selecting the

appropriate decolorization algorithm for optimal luminance representation.

ing that changes in color are minimally influenced by shifts in
luminance. Our approach involves converting RGB images to
the YCbCr color space, which segregates luminance (Y) from
chrominance (Cb and Cr). This separation proves especially prac-
tical for video applications. In Fig. 8 we plot the color variance
versus luminance and observe that the simple color space conver-
sion algorithms are practical candidates to generate grayscales for
low variance images with good luminance information.

Perceptual decolorization algorithms, such as CIELAB,
WCCD, or YCbCr, offer several benefits and advantages for video
decolorization: (i) These algorithms are designed to preserve the
luminance information from the color image, maintaining the
brightness variations and luminance characteristics of the origi-
nal scene. (ii) Additionally, they take into account the color per-
ception characteristics of the human visual system. By consid-
ering factors like color spaces that align with human perception,
these algorithm mappings ensure a consistent and accurate repre-
sentation of colors in grayscale. This result in generating visu-
ally pleasing, natural-feeling, and coherent videos. Furthermore,
the characteristics like simplicity, low parameter dependency, and
compatibility, make them well-suited for video applications.
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Figure 9. Comparison of video frames (original video courtesy of [24]):

(left) Grayscale frames using the perceptual-based algorithm (WCCD). (mid-

dle) Grayscale frames using the spatial contrast-based algorithm [5]. (right)

Original video.

On the other hand, spatial contrast-based algorithms priori-
tize local contrast, edge enhancement, and emphasize objects and
details based on their spatial characteristics. These algorithms
typically apply a uniform contrast enhancement across the entire
image or regions of interest. However, this approach is ineffective
in adapting to variations in image content, resulting in undesirable
grayscale mappings as demonstrated in Fig. 9. Furthermore, this
operation may potentially lead to abrupt changes in contrast and
introduce flicker artifacts due to localized contrast enhancements
resulting in pixel intensity variations, as shown in Fig. 10. How-
ever, the actual performance and presence of flickering can vary
depending on the specific algorithms, parameters, and character-
istics of the input video.

Conclusion

Grayscale images are essential for many image processing
applications. Despite the existence of numerous proposed solu-
tions, determining the most suitable one for a specific application
remains a challenge, and it often requires a subjective evaluation.
In order to address this challenge, we conducted a psychological
experiment to compare and evaluate two types of algorithms: (i)
simple color space conversion algorithms and (ii) spatial contrast-
based algorithms. The results of our experiment demonstrate that,
on average, CIELAB performs better, and it highlights the need
for preserving luminance information for achieving a natural ap-
pearance. Interestingly, we observed that individuals with quick
response times tend to prefer spatial contrast-based algorithms.
However, it is important to note that spatial contrast-boosting al-
gorithms may result in an overemphasis of grayscales, which can
be perceived as exaggerated. By conducting this psychological
experiment and analyzing the data, our findings highlights the
significance of preserving luminance information and maintain-
ing appropriate contrast levels in grayscale images to ensure the
visual quality.
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Figure 10. The 1D plot illustrates the intensity values of the region of

interest (ROI) in the video shown in Fig. 9, obtained using two different de-

colorization algorithms. The spatial contrast boost decolorization algorithm

[6] exhibits flicker artifacts, resulting in fluctuations in intensity values. In

contrast, the perceptual decolorization algorithm (WCCD) demonstrates a

smoother transition of mean intensities, indicating its ability to preserve a vi-

sually pleasing and consistent intensity representation.
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