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Abstract. In recent years, the advances in technology for detecting
paint defects on exterior surfaces of automobiles have led to the
emergence of research on automatic classification of defect types
using deep learning. To develop a deep-learning model capable
of identifying defect types, a large dataset consisting of sequential
images of paint defects captured during inspection is required.
However, generating such a dataset for each factory using actual
measurements is expensive. Therefore, we propose a method for
generating datasets to train deep-learning models in each factory by
simulating images using computer graphics. c© 2023 Society for
Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2023.67.5.050412]

1. INTRODUCTION
In the automobile industry, a range of defects may occur
on automobile exterior surfaces during the external painting
process. Such defects may include convex defects stemming
from painting on areas where iron powder or dust adheres
to the automobile exterior surfaces, and concave defects
caused by oil or silicone adhering to the exterior surfaces
and repelling the paint [1], as shown in Figure 1. Since
defect detection requires significant visual concentration and
expertise, efforts are being made to automate this process.
In a previous study, Lou and Huang [2] advocated for
a proactive approach to quality control utilizing artificial
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intelligence and engineering principles for addressing com-
plex and uncertain manufacturing processes. They prior-
itized on-process inspection over post-process inspection
and employed hierarchical decision making with fuzzy
MIN-MAX algorithms and optimization to evaluate process
performance and prevent defects in automotive topcoat
applications. Meanwhile, Tanaka et al. [3] concentrated on
identifying concave and convex defects on painted surfaces
and developed a technique that employs a surface light
source and video camera to detect defects and discriminate
unevenness. In recent times, research has focused on
developing a tunnel-type inspection system [4] (Figure 2)
that autonomously detects paint defects, as well as enabling
deep-learning-based classification of defect types. Training a
deep-learningmodel for this purpose requires a large dataset
consisting of images of parts with paint defects from an
automobile exterior that has passed through the inspection
system (hereafter referred to as ‘‘paint defect images’’), as
depicted in Figure 3. However, generating such a dataset by
capturing images and building individual trainingmodels for
each customer are expensive and time-consuming processes.

This study proposed a method for generating a learning
dataset for each factory by simulating image generation using
computer graphics (CG). Figure 4 shows the concept of the
proposed method. The shape data of automobile exterior
surface paint defects as well as the condition of the inspected
object, equipment, and optical arrangement of the factory
were simulated to create a CG object (Object A) and the
environment (Factory A) that accurately reproduced the
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Figure 1. Schematic and image of paint defects.

Figure 2. In-line tunnel-type paint defects inspection system esϕi [4].

defects of the painted automobile exterior surface observed
in that factory. The simulation generated a dataset (Dataset
A) of images of automobile exterior surface paint defects
found in the factory. However, owing to differences in the
conditions of the test objects and equipment, a deep-learning
model trained on Dataset A cannot accurately classify
measured data of defect images from a different factory
(Test set B). Therefore, a virtual dataset (Dataset A in B)
can be created by generating a reproduction environment
of a different factory (Factory B) using CG software and
simulating it with Object A’ modified for the different factory
test set conditions. The deep-learning model trained on
Dataset A in B is expected to classify Test set B with higher
accuracy.

The efficacy of this method was evaluated by generating
two datasets, Dataset A and Dataset A in B, and comparing
the classification accuracy in Test set B of deep-learning
models trained on Dataset A and Dataset A in B.

2. RELATEDWORKS
2.1 Dataset Creation for Deep Learning with CG
In recent years, with research using deep learning becoming
popular, many methods for creating training data sets using
synthetic data have been proposed [5]. In this section,
we introduce some examples. An example of a dataset
created using CG is a dataset for a deep-learning model
to detect a specific object. Rajpura et al. proposed a
method to create a dataset with composite images by
rendering packaged foods reproduced in Blender in a virtual
environment of a refrigerator to detect packaged foods in
a refrigerator [6]. Furthermore, O’Byrne et al. proposed a
method to generate synthetic images featuring biofouling
in various virtual environments to detect biofouling [7] in
marine structures [8]. To avoid privacy issues, several studies

have also used CG to build synthetic models of humans
when creating datasets containing human face images and
videos. Queiroz et al. and Dong et al. proposed pipelines
for generating synthetic images of faces using CG [9, 10]
In addition, Ragheb et al., De Souza et al., and Varol et al.
created a large dataset for human action recognition using
CG [11–13].

2.2 Analysis of 3D Data Using 3DCNN
The 3D convolutional neural network (3DCNN) is a neural
network architecture proposed by Ji et al. that has been
expanded to support three-dimensional input [14]. By per-
forming three-dimensional convolution in the convolution
stage, the 3DCNN can compute features from both spatial
and temporal dimensions. The 3D convolution is achieved
by convolving the 3D kernel into a cube formed by stacking
multiple consecutive frames. With this construction, the
feature map of the convolutional layer is connected to the
previous layer of consecutive frames, enabling the capture of
motion information.

The first purpose of using 3DCNN is anomaly detection.
Collins et al. constructed a 3DCNN model that detected
colon and esophageal cancer with high accuracy by training
on hyperspectral image datasets of mucosal tissue in the in-
tracanal regions of the colon and esophagus of patients [15].
Wang et al. also developed a deep autoencoder network for
detecting abnormal behavior in surveillance videos, which
combines a 3DCNN that encodes short-term temporal and
local spatial information and a ConvGRU [16] that encodes
long-term temporal and global spatial information [17].
Other examples include fatigue behavior detection for train
drivers [18], fall detection for elderly people in a home
environment [19], and foul detection within a basketball
game [20]. A method for building 3DCNN models to
detect videos that exploit deep-faking techniques, which have
become a problem in recent years, has also been proposed by
Zhang et al. and Wang et al. [21, 22].

3. REPRODUCTIONOF PAINT DEFECT IMAGES
This study used Blender [23], an open-source CG software,
for generating images of paint defects and datasets. In this
section, we present the methodology for generating these
images and datasets using Blender.
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Figure 3. Example of the paint defect image.

Figure 4. Conceptual diagram of the proposed method.

3.1 Modeling of Defect Shapes
In this study, we generated a dataset consisting of four
classes: convex defects, concave defects, fiber defects, and
no defects. The shape data for convex and concave defects
were generated using the model equation for paint defects
by Yoshida et al. [24], while whereas the shape data for fiber
defects was based on measured data. The model equations
for paint defects used to generate the shape data for convex
and concave defects is presented below.

z = h · e
−

(
x2
+y2

0.1·s·d2

)s

. (1)

The parameters of height, diameter, and shape factor are
denoted by h, d , and s, respectively. The shape data for convex
and concave defects were obtained by generating random
values within a predetermined range for each factory. The
3D model geometry resulting from the Eq. (1) computation
is shown in Figure 5.

3.2 Reproduction of Paint Defects in Factory A
Figure 6 shows the process for reproducing paint defects.
First, as depicted in Figure 7, the surface point-cloud data of
a paint defect was generated by adding the shape data of the
defect at Factory A to the measured shape data of the orange

Figure 5. 3D shape of paint defects calculated using the model equation.

peel, which are minute irregularities appearing on the paint
surface. Subsequently, MeshLab [25] software was employed
to mesh the point-cloud data by establishing connections
between lines and planes. Themesh data of the defect surface
were then imported into Blender, where random curvature
was introduced to the mesh data to produce variations in
the reflection of the light from the inspection device source
in the paint defect images. Finally, Object A was created by
specifying the material (reflective properties).

3.3 Reproduction of the Environment of Factory A
The creation of Factory A involved the construction of
a virtual environment based on the optical arrangement
and conditions present in the real-world Factory A. As
depicted in Figure 8, this involved the placement of a camera
and an arch-shaped light source to simulate the real-world
environment. Additionally, Object A, generated using the
methodology outlined in Section 3.1, was placed within
Factory A and given horizontal motion animation. A 101
× 101 × 33 (frame) image of the defect was produced by
limiting the render area to the region surrounding the paint
defect.

Figure 9 compares the simulated image in Dataset A
generated using the above method with an image captured
in a real environment. To demonstrate the similarity between
the measured and generated images, a subjective evaluation
experiment was conducted where 9 students evaluated three
types of automotive paint defects: concave, convex, and
fiber. The students were presented with 10 simulated videos
generated from the measured videos of concave, convex,
and fiber defects, respectively, and asked to evaluate each
defect individually. A five-level evaluation index was used
in the evaluation process as shown in Figure 10, with
higher numbers indicating greater similarity. The evaluation
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Figure 6. Procedure for reproducing paint defects.

Figure 7. Conceptual diagram of the procedure for generating a paint defect surface.

Figure 8. Optical arrangement.

results for concave, convex, and fiber defects are shown in
Figures 11–13.On the vertical axis is the evaluation value and
on the horizontal axis is the number of the presented defect

movies. The average mean evaluation scores for concave,
convex, and fiber defects were 3.36, 3.35, and 3.25 points,
respectively. The particularly low evaluation score for fiber
defects is thought to be due to the variation in the shape of the
fibers falling on the surface of the coating and the differences
between factories.

Although the student evaluation results were not ideal
based on the average from the questionnaire, the fact that
the evaluations by experts showed a remarkable similarity to
the images captured confirmed the validity of the generated
images.

3.4 Change of Environmental Conditions to Factory B
Table I shows the differences in the equipment and test
object conditions at each factory. As shown in Figure 14,
simulations can generate paint defect images with varying
appearances by changing these conditions despite possessing
similar defect shape data.

The procedure for generating Dataset A in B, a virtual
dataset for Factory B, is described as follows. First, the shape
data of paint defects used to generateDatasetAwas prepared.
Subsequently, the defect shape data of Factory A was used to
generate a defect surfaceCGobject; ObjectA’ that reproduces
the test object conditions of Factory B. Next, Factory B,
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Table I. Differences between factories.

Category Item Factory A

Equipment Focal length (mm) 9, 12.5, 16
F number 7

Number of pixels (px) 4097× 3000
Pixel sixe (µm) 3.45

Object distance (mm) 600–1600
Shooting pitch 4
(mm/frame)

Test object Body shape Flat surfaces: 70%
Curved surfaces: 30%

Level of orange peel Good
(amplitude 1.4–5.0x)

Distribution of Black and white only
paint colors

Category Item Factory B

Equipment Focal length (mm) 16, 25, 35
F number 7

Number of pixels (px) 4096× 2168
Pixel size (µm) 3.45

Object disance (mm) 600–1600
Shooting pitch 2.5
(mm/frame)

Test object Body shape Flat surfaces: 30%
Curved surfaces: 70%

Level of orange peel Bad
(amplitude 1.4–15.0x)

Distribution of Black and white
paint colors plus solid colors

which reproduced the equipment conditions of Factory B,
was generated. Finally, by placing Object A’ in Factory B and
executing a simulation, Dataset A in B was generated.

4. COMPARISONOF CLASSIFICATION ACCURACY
USING 3DCNN

In this study, we used 3DCNN to compare the classification
accuracy of Test set B when trained on two datasets. As there
was no Test set B containing captured images in this study,
we generated Test set B through simulation using Blender.
Table II shows the number of data samples per class included
in each dataset.

4.1 Network Architecture
The network architecture of the 3DCNN used in this study
is depicted in Figure 15. The input comprises a 33-frame
sequence of 101× 101-pixel paint defect images, with a single
channel. The input was subjected to a series of operations,
including a 3D convolution layer, 3D maximum value
pooling layer, and a dropout layer to alleviate overfitting.
Subsequently, it went through additional coupling layers,

Figure 9. Comparison of captured and simulated images (right: captured,
left: simulated).

Table II. Number of data samples for each class in datasets.

Data set A Data set A in B Test set B
Class Number Class Number Class Number

of data of data of data

Convex 900 Convex 900 Convex 840
Concave 240 Concave 240 Concave 324
Fiber 60 Fiber 60 Fiber 36

No defects 240 No defects 240 No defects 240
Total 1440 Total 1440 Total 1440

resulting in the prediction of the probabilities of four classes:
convex, concave, fiber, and no defects.

4.2 Training
The 3DCNN model was trained on Dataset A (Model A)
and Dataset A in B (Model A in B), which were divided into
80% for training and 20% for validation according to Pareto’s
law [26]. The 80/20 split ratio is one of the most common
ratios in the deep-learning field [27, 28]. The training was
performed for 40 epochs using the hardware environment
specified in Table III, with the optimization function set
to Adam, learning rate of 0.0001, and batch size of 8. The
learning process took approximately 16 minutes. Figure 16
shows the changes in losses during the learning process.
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Figure 10. Five-level evaluation index of subjective evaluation experiments.

Figure 11. Subjective evaluation results for concave defects.

Figure 12. Subjective evaluation results for convex defects.

Table III. Hardware environment.

CPU Intel R©Xeon (R) Silver 4116 CPU @ 2.10 GHz× 48
RAM 93G DDR4
GPU NVDIA GeForce RTX 2080 Ti× 4, Quadro P400

4.3 Comparison of Classification Accuracy
We compared the detection results of both models using
four indicators: precision, true positive rate (TPR), F1 score,

and accuracy. We further evaluated them using the area
under the curve (AUC) indicator derived from the receiver
operating characteristic (ROC) curve. AUC measures the
classification performance and diagnosis rules that are
widely used [29–31].

Table IV shows the confusionmatrix, where true positive
(TP) means that a positive sample was correctly identified,
true negative (TN) means that a negative sample was
correctly identified, false positive (FP) means that a negative
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Figure 13. Subjective evaluation results for fiber defects.

Figure 14. Comparison of simulation results (Right: Factory A, Left:
Factory B).

Table IV. Confusion matrix.

Predicted value
Positive Negative

Correct value
Positive

TP FN
True positive False negative

Negative
FP TN

False positive True negative

sample was incorrectly identified as positive, and false
negative (FN) means that a positive sample was incorrectly
identified as negative.

Precision is defined as in Eq. (2) and indicates the
percentage of TP samples among the samples identified as
positive.

Precision=
TP

TP + FP
. (2)

TPR is defined as in Eq. (3) and indicates the percentage of
positive samples in the data that are correctly discriminated.

TPR=
TP

TP + FN
. (3)

The precision of TPR and repeatability alone do not provide
a good assessment of model performance. Therefore, we
introduced the F1 score to consider fit and reproducibility
together. Its definition is shown in Eq. (4).

F1= 2
Precision ·TPR
Precision+TPR

. (4)

Accuracy is generally used to evaluate the global accuracy of
a model, which contains insufficient information and does
not provide a comprehensive evaluation of the performance
of the model. It is defined as in Eq. (5).

Accuracy=
TP +TN

TP +TN + FP + FN
. (5)

Tables V and VI show the confusion matrices for Model
A and Model A in B. Comparing the tables, Model A in
B detects concave and convex defects more accurately than
Model A. This shows that Model A in B more accurately
identifies these defects. To further quantify and evaluate the
performance of both models, the accuracy evaluation results
from the confusion matrices of both models are presented
in Tables VII and VIII. The tables show that Model A in
B outperforms Model A in all evaluation indices except
TPR for fiber defects and no defects. The relatively low
TPR for fiber defects may be due to the difficult nature
of accurately classifying fiber defects, which vary in shape
between factories.

Figures 17 and 18 depict the ROC curves obtained from
Model A and Model A in B, respectively. The horizontal
and vertical axes of the ROC curve represent TPR and FPR,
respectively. FPR signifies the percentage of negative samples
misclassified as positive. Its definition is shown in Eq. (6).

FPR=
FP

TN + FP
. (6)
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Figure 15. Network architecture.

Figure 16. Changes in loss during the learning process (Right: Model A, Left: Model A in B).

The upward curvature in both cases signifies that these
models achieved low FPR while maintaining high TPR,
indicating their robust performance. This is indicative of
the ability of the models to accurately predict positive
samples while minimizing misclassifications of negative
samples as positive. Notably, the ROC curve of Model A
in B exhibits higher elevation compared to that of Model

A, suggesting superior discriminative power. A higher ROC
curve elevation signifies that Model A in B achieved a more
balanced classification performance, making it better suited
for defect detection in Factory B.

The AUC values, as presented in Table IX, further
support the performance evaluation. AUC values closer
to 1.0 indicate better model performance, close to the
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Table V. Confusion matrix of Model A.

Model A

Predicted
Convex Concave Fiber No defects

True

Convex 751 21 7 61
Concave 17 256 14 37
Fiber 1 2 30 3

No defects 0 0 0 240

Table VI. Confusion matrix of Model A in B.

Model A in B

Predicted
Convex Concave Fiber No defects

True

Convex 827 5 0 8
Concave 5 319 0 0
Fiber 5 3 28 0

No defects 0 0 0 240

Table VII. Accuracy evaluation results for Model A.

Class Convex Concave Fiber No defects

Precision 0.977 0.918 0.588 0.704
TPR 0.894 0.790 0.833 1.00
F1 Score 0.933 0.849 0.690 0.826
Accuracy 0.886

Table VIII. Accuracy evaluation results for Model A in B.

Class Convex Concave Fiber No defects

Precision 0.988 0.976 1.000 0.968
TPR 0.985 0.985 0.778 1.00
F1 Score 0.986 0.980 0.875 0.984
Accuracy 0.982

ideal model with perfect predictive ability. Comparing
both models, Model A in B outperforms Model A in
all defect classifications, demonstrating its superiority. The
comparisons collectively corroborate the higher accuracy of
Model A in B over Model A, thereby affirming the efficacy of
the proposed method.

5. SUMMARY AND FUTUREWORK
In this paper, we presented a novel method for generating
factory-specific datasets for paint-defect classification of
automotive exteriors. By using Blender to simulate paint
defects and the factory environment, our approach elimi-

Figure 17. Receiver operating characteristic (ROC) curve of Model A.

Figure 18. Receiver operating characteristic (ROC) curve of Model A
in B.

Table IX. AUC comparison of two models.

Model A Model A in B
Class AUC Class AUC

Convex 0.957 Convex 0.995
Concave 0.964 Concave 0.999
Fiber 0.942 Fiber 0.988
No defects 0.961 No defects 0.997

nates the need for new data collection and thus provides
a cost-effective and efficient solution. Experimental results
show a significant improvement in test set classification
accuracy, supporting the effectiveness of the proposed
method. The ability to generate factory-specific datasets
considers the variation in paint defects across different
factories and improves the performance of the model for
real-world applications. To the best of our knowledge, no
similar study has used the proposed method, thus proving
the novelty and uniqueness of our contribution, as this
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study is pioneering in its approach. Our study lays the
foundation to facilitate the practice of defect classification
in the automotive industry and optimize the quality control
process.

Future work includes superimposing paint defects on
the automobile model and mapping measured values to
material parameters to generate simulations that more
closely resemble inspections under real-world conditions.
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