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Abstract 

Imaging is enabled by the limitations of the human visual 
system, which is blind to certain physical differences. The 
trichromacy of human vision, e.g., allows for very different 
materials to be combined in a way that results in the same signals 
triggered by the eye’s cones. As a result a print can elicit the same 
response as a display, or a projection can yield colors like those in 
a painting. The limits of spatial acuity too allow for discrete 
patterns, e.g., those resulting from halftoning, to appear continuous. 
This paper turns its attention to the limits of color difference 
perception in stimuli with a very small subtense, such as thin lines 
or fine features of 3D objects. A first set of psychophysical data, 
obtained in an on-line visual experiment, indicates a dramatic 
relaxation of perceptibility thresholds when comparing very thin 
with thicker lines. The second half of the paper then presents printer 
imaging pipeline strategies that take advantage of these 
experimental findings to successfully render fine lines while taking 
advantage of the more limited sensitivity with which their specific 
colors are perceived. 

Introduction 
Color matching is important in many applications, including 

the imaging of architectural and engineering drawings. A key 
requirement there is the accurate representation of line colors, which 
in turn relies on knowing how they and their differences are 
perceived. More specifically, the question arises of how much of a 
difference in the color of thin lines can be perceived and there is 
anecdotal evidence for sensitivity being lower than when thick lines 
or objects with solid areas have their colors compared. This 
phenomenon is also related to how the colors of fine features, e.g., 
in 3D printed objects, are seen. In both cases the question about 
perceptibility of differences sets limits to what changes an imaging 
pipeline can make in such features before those changes result in 
visible differences. 

While there is rich literature on color perception varying with 
a multitude of factors, including scale and angular subtense (Xiao et 
al., 2010), and color differences depending on different parameters, 
e.g., spatial separation (Mirjalili et al., 2019), there is no published 
work on line color differences. 

As a result, an on-line visual experiment was launched in 
February 2022 to explore the phenomenon of color difference 
perception between lines of different thicknesses and the present 
paper reports its findings. This is followed by the presentation of 
various printing imaging pipeline strategies that benefit from a 
characterization of color difference perceptibility in these image 
features. 

Experimental design 
General approach  

The experiment set out here is a first, pilot exploration of the 
impact of line thickness on color different perceptibility, with a 
hypothesis that sensitivity to the color of thinner lines is lower than 
that to thicker lines. The objective is to understand whether such a 
hypothesis is consistent with empirical data and whether there it is a 
robust phenomenon rather than one that is only detectable under 
narrow and carefully controlled conditions. As a result, a very quick 
experiment was designed that could be deployed on-line to a large 
number of observers under uncontrolled and unknown conditions. If 
a significant phenomenon is detected, it could then be characterized 
in a follow-up study with a larger and more systematically–
structured set of stimuli presented under controlled conditions. 

Stimuli 
Using the method of constant stimuli (Gescheider, 1985), 22 

line pairs were generated for two thickness pairs (two thick lines 
versus one thin and one thick line) and along three color change 
directions (lightness from a mid-gray, mostly chroma from a cyan 
and mostly hue also from a cyan). The colors were assigned and 
varied in HSB terms, which is common for the applications where 
line content is created (Fig. 1). 

 

 
Figure 1. Line pairs varying in HSB difference dimensions and magnitudes. A 
green box indicates the central line pairs that had a strict color match in each 
of the three cases. 

Tab. 1 shows the colorimetries corresponding to each of the 
lines from Fig. 1, assuming an sRGB display. Tab. 2 then shows 
∆E2000 color differences for each of the line pairs under those 
assumptions. 
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Table 1: Line colorimetries 

Line 
color 
label 

Colorimetry 

L* a* b* 
B40 43.19 0 0 
B45 48.44 0 0 
B50 53.19 0 0 
B55 58.25 0 0 
B60 63.22 0 0 
H193 70.48 -27.25 -37.43 
H196 66.79 -21.49 -43.31 
H199 63.11 -16.35 -49.21 
S65 74.80 -24.20 -31.00 
S80 71.26 -24.77 -36.70 
S95 68.09 -23.07 -41.23 

Table 2: Line pair color differences 

Stimulus # Label ∆E00 
1 1: B60-50 D 9.05 
2 2: B55-50 D 4.74 
3 3: B50-50 D 0.00 
4 4: B45-50 D 4.74 
5 5: B40-50 D 9.90 
6 6: B60-50 S 9.05 
7 7: B55-50 S 4.74 
8 8: B50-50 S 0.00 
9 9: B45-50 S 4.74 
10 10: B40-50 S 9.90 
11 11: H193-196 D 4.76 
12 12: H196-196 D 0.00 
13 13: H199-196 D 4.42 
14 14: H193-196 S 4.76 
15 15: H196-196 S 0.00 
16 16: H199-196 S 4.42 
17 17: S95-80 D 3.16 
18 18: S80-80 D 0.00 
19 19: S65-80 D 3.42 
20 20: S95-80 S 3.16 
21 21: S80-80 S 0.00 
22 22: S65-80 S 3.42 

 

Procedure  

 
Figure 2. Stimulus presentation and instructions 

11 of the 22 stimuli (2, 3, 7, 8, 11, 12, 14, 15, 17, 18 and 20) 
were included twice in the experiment to allow for quantifying intra-
observer repeatability, resulting in a total of 33 stimuli. The order of 

stimuli was randomly scrambled and shown to each observer in that 
same, scrambled order with three stimuli displayed at any one time 
and the observer being instructed as shown in Fig. 2. 

 
To obscure the structure of the underlying stimuli and the 

inclusion of repetitions, the 33 stimuli were labelled sequentially in 
the scrambled order. The experiment was made available to 
observers via using the questionpro.com platform. 

Viewing conditions  
Unlike in a laboratory-based experiment, viewing conditions 

were entirely uncontrolled and unknown in this experiment. Aspects 
like display size, brightness, contrast, gamut or calibration state; 
viewing distance, angle, temporal duration; observer color vision 
status, adaptation state, age, sex, gender or color matching 
experience were all unknown. While this does not allow for 
conclusions to be drawn about the effect of independent variables, 
or to relate the findings of this experiment to a particular set of 
conditions, it does provide a view of how color difference 
perceptibility depends on line thickness over the variety of 
conditions under which participants performed the present visual 
task. 

Observers 
Key to the usefulness of this experiment’s findings is to have a 

large number of observers participate in it, as has been shown in 
previous visual experiments where data from large-scale, on-line, 
uncontrolled execution compares well with data from laboratory-
based, carefully controlled conditions (cf Moroney, 2003; Mylonas 
and MacDonald, 2010; High et al., 2021). 

478 observers have completed this experiment, which is 
significantly higher than the typical level of in-person participation 
rate, which tends to be in the low tens. Fig. 3 shows the locations 
from which the experiment was accessed. 

 
Figure 3. Locations from which observers participated in on-line experiment. 

Data analysis  
The raw data from this experiment are 478 binary, nominal, 

yes-no responses for each of the 33 stimuli for which observers had 
to answer the question of whether the pair of lines of a given 
stimulus match.  

First, this data allows for a quantification of intra–observer 
repeatability, thanks to the inclusion of 11 repeated stimuli in the 
experiment. Counting how many of the 11 stimuli were judged 
differently the first versus the second time results in an intra-
observer repeatability error percentage. E.g., an error of 9% here 
would mean that only one of the 11 stimuli were judged differently 
on the two occasions. 
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Second, the binary responses to each of the 22 stimuli (pooling 
the repetitions for 11 of them) allow for the computation of the 
percentage of times that the pair of lines in a given stimulus was 
judged to match. E.g., an 80% value here would mean that 4/5 of the 
responses indicate that the lines match, while the other 1/5 state that 
they do not match. 

Third, the match percentages can be split into two sets – one 
for stimuli where line thicknesses are the same and the other for 
where they differ. Fitting a psychometric function (here the Weibull 
distribution was used (Watson, 1979)) to each of these sets of 
percentages and identifying the ∆E value at which the fitted function 
has a value of 50% then identifies the perceptibility threshold, and 
therefore the value of the just noticeable difference between no 
difference being seen and some, just-noticeable difference 
appearing (Engeldrum, 2000). 

Experimental results 
Intra-observer repeatability 

The histograms in Fig. 4 show intra–observer repeatability 
error distributions for all stimuli, only the stimuli with same line 
thicknesses and only the stimuli with different line thicknesses. 
They show a clear spread in repeatability overall, with a median of 
24%, and a clear difference between the same-thickness (ST) and 
different-thickness (DT) cases. For ST stimuli 72% of the observers 
made zero or one mistake, while for DT stimuli 76% of observers 
made up to 3 mistakes. Given the uncontrolled nature of the 
experiment, the overall 24% intra-observer error rate seems 
reasonable and since the data set is large, future analysis could 
compare thresholds derived from subsets of observers with different 
intra-observer error levels.   

 

 
Figure 4. Intra–observer repeatability error distributions for all stimuli and per 
stimulus type. 

Perceptibility threshold 
Finally, the experiment yields data to address the question that 

stood at its beginning: is sensitivity to color differences lower when 
a thin and a thick line are compared than when two thick lines are 
viewed? Fig. 5 shows the ST (blue squares) and DT (red circle) 
match detection percentages, the psychometric functions fitted to 
the two data sets and the just-noticeable difference (JND) values 
derived from them. 

 
Figure 5. Perceptibility thresholds for same– and different–thickness color line 
pairs. 

One of the most striking results here is that fitting the 
psychometric function to the same-thickness stimuli under these 
uncontrolled and unknown conditions, but for a significant number 
of observations, yields a JND threshold of 1.05 ∆E00. Bearing in 
mind that ∆E equations are derived from square color patches 
viewed against a gray background under carefully-controlled 
conditions and for about one ∆E to correspond to a JND (Hunt and 
Pointer, 2011). This is a startling level of agreement and a strong 
anchor to established color difference data. 

Turning to the different-thickness case results in a JND of 7.02 
in ∆E00 terms. In other words, where an only-just noticeable 
difference is seen between a thin and a thick line, a difference of 7 
∆E00s would be seen if those same colors were applied to two thick 
lines. That is, it would be possible to place six colors between the 7 
∆E00 pair, such that each color would be distinguishable from its 
neighbors and be a similar color difference from both. 

The answer to the question of whether sensitivity to color 
differences between a thin and a thick line is lower than for two thick 
lines is therefore an emphatic yes. 

What this data does not tell us is what that difference in 
sensitivities depends on, how it relates to specific thicknesses, 
brightnesses, colors, contrasts, color acuity, normal versus impaired 
color vision, etc. It does give a strong indication though that the 
effect is large and robust (showing up under these varied and 
uncontrolled conditions) and a good candidate for further study. 

Implications for imaging pipelines 
One of the consequences of this perceptibility threshold study 

is that imaging pipelines have opportunities for treating fine lines 
(or similar, small–detail content) differently to, say, photographic 
content, signage or spot colors, where perceptibility thresholds are 
much lower. In this section, alternative ways to use these insights 
will be explored, focusing especially on choices that can be taken in 
color pipeline resources, such as color look-up-tables (LUTs) and 
their composition as well as halftoning resources and parameters. 

The examples used in the following sections will be based on 
content that is, to begin with, challenging to reproduce, specifically 
single-pixel light gray lines that, while discouraged and rarely used, 
can be present in some CAD applications such as architectural 
drawings. Such lines will, necessarily, be reproduced in a way where 
printed colorants form discontinuous structures, even though the 
input is a continuous, light line. How to best represent the 
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continuous input under such constraints is a key challenge here. 
Below is an example of such content and what it would look like 
printed on plain paper with black ink only. 

  
Figure 6: Source content (RGB contone TIF image) and printed output (plain 
paper, black ink, baseline PARAWACS halftoning using a blue-noise pattern). 

As can be appreciated from Fig. 6, single pixel light gray lines 
are difficult to reproduce well (while additional inks such as gray 
can help here, even their use has limits – e.g., when reproducing a 
line lighter than such a gray ink) due to the sparsity of the drops and 
due to the irregularity of their placement. The lighter the line, the 
lower the number of drops to be fired and the harder it is to maintain 
a good distinguishability of the lines and a differentiation between 
solid, light lines and darker, dashed lines. One possible 
improvement here is to use composite ink combinations instead of 
black ink only, e.g., using higher amounts of cyan, magenta and 
yellow instead of a lower amount of black, but that itself may not be 
enough. The following section looks at some further options for 
improvement. 

Quantization of Color Resources 
A natural consequence of higher perceptibility thresholds is to 

translate these into coarser color resources by means of quantization. 
First a brief description of resources follows. 

Without loss of generality, the focus here will be on the 
Halftone Area Neugebauer Separation (HANS) pipeline paradigm 
(Morovic, 2011) where imaging instructions are represented in 
terms of Neugebauer Primary (NP) area coverages (or NPacs). 
These are probability distributions of NPs at any one pixel, so that, 
e.g., an NPac of [CC:0.3, CM:0.5, w:0.2] would have a 30% chance 
of a 2-drop Cyan NP, 50% chance of a Cyan and Magenta drop 
overprinting and a 20% chance of being left blank. A color pipeline 
using the HANS paradigm would then define its continuous-tone, 
device color nodes as NPacs, resulting in a N3 or M4 LUT for RGB 
or CMYK respectively, that is used with interpolation in the process 
of printing to arrive at the per-pixel NPacs that then define the per-
pixel probability of the possible NPs. 

The first opportunity for quantization presents itself in terms of 
the resolution of each per-pixel NPac: the bit-depth of the area 
coverages (or probabilities) and the number of possible NPs for a 
given NPac. In a typical graphics or photo context the bit-depth of 
area coverages is at least 8 bits, but can be as high as 16 bits, while 
the number of NPs per NPac can also be high. Such NPac 
characteristics then result in smooth transitions and fine granularity 
(Morovic, 2018). Instead, for fine line content, the opposite choices 
can be made: lower bit-depth and lower numbers of NPs per NPac. 
Furthermore, as mentioned above, choices can also be made at the 

ink level, such as whether to use black ink for grayscale content or 
to combine it (especially at lower densities) with the use of 
composite gray (made up of cyan, magenta and yellow instead of 
black ink). Using composites means a higher amount of ink is used, 
which in turn may result in more drop positions being occupied. This 
has advantages and disadvantages: more drops means potentially 
better line definition, but varying the inks means that the visual 
impact may vary in lightness, hue and chroma. 

 

 
Figure 7: A comparison of two halftones, using 8 bit area coverage and 
unconstrained number of NPs per NPac (left top and bottom) versus a 6 bit 
area coverage with at-most 3 NPs per NPac (right top and bottom). Both 
halftones use the same generic blue-noise halftone pattern. The bottom of the 
figure corresponds to zoomed-in regions of the top of the figure. 

For a light gray color with a continuous tone device color value 
of 173 in 8 bits (a light grey density of around 30% corresponding 
to the image in Figure 6 left) on a CMYK-ink system, an NPac of 
[w:0.75, C:0.08, M:0.08, Y:0.075, CMY:0.015] could be used. 
Here, the smallest area coverage is 1% of a CMY overprint and the 
NPac allows a choice of 5 NPs to be used (with their respective 
probabilities). Quantizing the above NPac to 6 bit precision 
(whereby the smallest area coverage permitted is 1/26=0.0156 or 
1.56%) and constraining the maximum number of NPs to be used to 
3, results in an NPac of [w:0.75, C:0.125, M:0.125]. Fig. 7 shows 
the impact on the halftone pattern that shows a clear improvement 
in the quantized case (right hand side), even though a slightly lower 
amount of ink is used. The reason for this is that in this case, the 
CMY NP is removed (since its area coverage is below the threshold) 
and Y is also removed (since it’s the smallest coverage that exceeds 
the 3 NP constraint), resulting in only C and M NPs being used 
(other than the blank NP) which also have closer lightnesses. The 
combination of these factors results in a better, visually more regular 
pattern with apparently more pixels (but at a lower total ink use). In 
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this example, colorimetry was not explicitly taken into account but 
doing so could further improve choices (such as explicitly favoring 
darker NPs or NPs of similar lightnesses for example). 

 

Quantization of Custom Halftone Patterns 
Another area where quantization can be applied is halftoning. 

In the context of HANS, the role of halftoning is purely spatial. 
Unlike in colorant-channel based pipelines, where halftoning occurs 
per-channel and the total halftone for all colorants is the combined 
result of halftones for each channel individually, for HANS 
pipelines all colorants are halftoned at once since this step amounts 
to selecting an NP at a pixel from the corresponding NPac at that 
pixel. Broadly, two approaches are possible here: some form of error 
diffusion (selecting an NP at a pixel and diffusing the error of not 
being able to fully represent an NPac to the neighboring pixels) 
(Morovic, 2011) or PARAWACS (Parallel Random Area Weighted 
Coverage Selection) which is a selector-based approach where the 
selector value is used to pick an NP out of the NPac (Morovic, 
2017). Both error diffusion (ED) and PARAWACS lend themselves 
to quantization, however PARAWACS has been shown to have 
additional advantages such as smooth transitions and overall high 
IQ (Morovic, 2018). 

PARAWACS can use a pre-generated selector value matrix, 
which may be generated to have particular Fourier–spectral 
properties such as blue-noise or green-noise. In general, selector 
value matrices should satisfy the condition of equal likelihood of all 
its values (e.g., a matrix of NxN size and a resolution of M values, 
should have N*N/M pixels for each of the [1 to M] values). In the 
case of lines, especially single-pixel lines, a selector value matrix 
should in addition be built in a way that does not penalize any line 
angle. Here, a checkerboard (in itself a blue-noise pattern) is often 
used as the starting point. Fig. 8 shows an example of such a 
checkerboard pattern. An analysis of this matrix shows that each odd 
row does not contain values below 15% while each even row does 
not contain values above 85%. This means that depending on the 
spatial position of certain densities of lines, these may even be 
completely lost in the halftoning stage (e.g., if a <15% density line 
falls on an odd row). 

  
Figure 8: An 8 bit checkerboard pattern used as a selector-value matrix (left) 
and a test pattern for low-density single pixel lines (right) halftoned with the 
selector value matrix. 

One way to improve over the naïve checkerboard pattern is to 
introduce constraints on the nature of the checkerboard in order to 
have all densities in all rows/columns of the matrix well represented. 
This can be achieved by dividing the full range of [1 to M] values in 

K sub-ranges and then picking random values from each sub-range 
in sequence. For example, for K=2, alternate values from sub-range 
along each row are picked and alternation is changed from row to 
row (i.e., always starting with a different sub-range). Fig. 9 shows 
an example of such a matrix at the same bit-depth as the previous 
example. 

  
Figure 9: An 8bit sub-range alternating checkerboard pattern used as a 
selector-value matrix (left) and a test pattern for low-density single pixel lines 
(right) halftoned with the selector value matrix. 

The halftone in Fig. 9 shows some signs of improvement as it 
results in more regularity, especially in the horizontal and vertical 
lines, but where it underperforms are the diagonals and also in terms 
of how different the regularity is in different locations (e.g., the left 
and right vertical lines). Here quantization can help. Fig. 10 shows 
two examples where selector matrices were generated similarly to 
Fig. 9, but at 10 bits and 6 bits respectively. 
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Figure 10: A test pattern for low-density single pixel lines halftoned with the 
alternating sub-range selector value matrix approach in 10 bits (top left) and 6 
bits (top right), and the printed output showing the 6 bit pattern (bottom right) 
against the baseline blue noise pattern from earlier (bottom left). 

As can be seen, the lower bit-depth version in Fig. 10 (right) 
shows an advantage over the higher bit-depth version (and over the 
default 8 bit version). 

Finally, another improvement to the matrix construction 
method can be achieved by further introducing regularity and 
alternation in the randomness inherent in these matrices, for 
example by reversing the alternation and introducing a zig-zag 
strategy as shown in Fig. 11. 

  
Figure 11: An 8 bit 4-sub-range alternating zig-zag checkerboard pattern used 
as a selector-value matrix (left) and a test pattern for low-density single pixel 
lines (right) halftoned with the selector value matrix. 

Conclusions 
Fine details such as single pixel light gray lines may pose a 

challenge in color reproduction pipelines, however the thresholds of 
sensitivity to differences and even departures from a target 
colorimetry are significantly higher to those of content occupying 
larger areas of the visual field.  

An extensive online study of a limited set of samples showed 
how differences as high as 7 ∆E2000 are acceptable for such 
content, while also confirming the 1 ∆E2000 JND threshold for 
larger areas of the visual field. This insight led to the exploration of 
choices in color pipeline parameters that relax the tight requirements 
for matching color or colorant amounts to benefit pattern regularity 
and printed content distinguishability. 

Two broad areas of such choices have been described here. 
First, quantization in the domain of color resources: the resolution 
to which differences in colorant amounts and Neugebauer Primaries 
are represented and second, quantization in the domain of the 
halftone pattern generation process. Furthermore, modifications to 
traditional baseline blue-noise patterns have been explored that also 
aid better single-pixel light line reproduction. 

These choices – taking both the specific needs as well as the 
looser thresholds into account – have been shown to enable better 
performance in printed content. Further investigations are needed to 
fully benefit from the new thresholds, such as taking the JND 
requirements for lines explicitly into account in resource generation 
as well as colorimetric choices (such as lightness preservation or 
lightness contrast minimization, as shown in the composite gray 
example). 
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