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Abstract 
Color enables humans to readily extract features of an object, 

leading us to describe tomatoes and apples as “red” despite the 

presence of other colors. How observers accomplish this is not well 

understood. In this study, we present observers with rapidly 

presented stimuli at varying levels of context. Observers were asked 

to select the color that best represents the image from eight options. 

We found that observers tended to select progressively lighter or 

darker colors as more context was introduced, although whether the 

representative color choice became darker or lighter varied from 

image to image. This is likely a result of observers discounting 

achromatic cues (i.e.: specular highlights, shadows) as context is 

revealed, but why images were treated inconsistently requires 

further investigation. Observer responses were noisily distributed. 

These results shed light on how observers characterize the color of 

multicolored objects. 

Introduction  
Color enables us to make valuable judgments about the features 

of an object. Especially in the natural world, objects are rarely a 

solid color, but are composed of multiple colors as well as shadows 

and specular highlights. Figure 1 shows an image of a tomato whose 

color tells us about its ripeness or what it might taste like. 

 

 
Figure 1. Complex objects such as tomatoes can have a variety of colors. 
 

Representative color can be defined as the color that best 

characterizes an object. How do humans determine what the 

representative color of a multicolored object is, such as the tomato 

in Figure 1? An observer might focus on the principal color of the 

object and omit accenting colors as well as shadows and specular 

highlights to make a judgment. Alternatively, one might attempt to 

“average” the colors present the same way a computer could 

calculate the average RGB value in an image. While this question is 

relatively unexplored, a recent study by Virtanen et al [1] showed 

that observers tend to perform averaging when asked if a simple 

stimulus was “bluer” or “yellower.” In this study, we further explore 

this question to gain understanding for what factors are considered 

when making a judgment for the representative color of an object. 

Methodology 
This experiment was designed as an extension of Carpenter’s 

[2] study that focused on the representative color of tomatoes for use 

in the agricultural industry. We expand on this prior study, instead 

with a focus on skin tones of human faces. Additionally, to address 

the limited observer availability during the COVID-19 pandemic, 

two identical experiments were run and their results compared: one 

online and one in a controlled onsite environment. 

In these two experiments, observers were presented with an 

image of an object for one second. Then, out of a selection of eight 

color patches, they were asked to select the one that they considered 

to be the best representative color of the object. 

Observers 
 A total of 40 observers participated online and 16 observers 

participated in the onsite controlled environment. Some observers 

that participated in the onsite experiment also participated in the 

online experiment, in which case, it was noted which experiment the 

observer took first. Observers taking the experiment online received 

additional instructions to disable screen filters (ie. blue light filters) 

and report their viewing conditions (ie. indoor dim). Basic 

background data was collected, including age, gender identity, 

whether the observer has experience in imaging, and whether the 

observer has a color vision deficiency. The experiment generally 

took 10-15 minutes to complete. 

An important limitation of this study to note is that observer 

ethnicities were not collected. Observers were recruited through a 

university recruitment system which did not include ethnic data of 

subjects. This oversight will be corrected in future data collection. 

Apparatus 
The onsite experiment was conducted in a dark room on an 

Eizo CG248. The screen size was 23.8" and the screen resolution 

was 3840x2160 with a refresh rate of 60 Hz. The monitor’s settings 

were calibrated to sRGB with a D65 measured white point of      

XYZ = (99.71, 100.3, 116.7). The background grey was selected to 

be RGB = (171, 171, 171) with a measured value of XYZ = (41.05, 

41.29, 48.12). The experiment was accessed via a webpage built 

using PsychoPY. Observers sat 70 cm away from the monitor. 

Stimuli 
Stimuli were generated using MATLAB (version 2022Ra). 20 

photos were used to produce stimuli for this experiment (12 faces, 3 

wines, 2 tomatoes, 1 pepper, 1 sky, 1 grass). The photos of faces 

contained subjects of the following ethnicities: 3 African 

Americans, 3 Asians, 3 Indians, and 3 Caucasians. To understand 

what strategies humans use to determine the representative color of 

an object, we must first understand whether context or smaller 

features play a role. For example, if the observer does not know that 

dark pixels are shadows or that pink pixels are lips, then their choice 

for the best representative color of an image may change. To test 

this, four versions of each photo were generated: a full resolution 
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image (768x768 pixels), a downsampled 64x64 version, a 

downsampled 16x16 version, and a randomized shuffle of the 16x16 

image (Figure 2). Downsampled images were not generated using 

nearest-neighbor averaging because this would create pixel colors 

not seen in the original image; instead, every nth pixel of the full 

resolution image was retrieved to construct the downsampled image, 

where n = 48 in the 16x16 and n = 12 in the 64x64. 

 

 
Figure 2. Four stimuli were generated from a 768x768 photo. From left to right: 
shuffled, downsampled 16x16, downsampled 64x64, original photo. 
 

 Eight color patches were generated for the observer to select as 

the color that best represents the image they are shown. This 

experiment utilizes the observer’s color memory by showing the 

stimulus first and then the color patches to choose from. In an earlier 

study, Bartleson [3] found that observers tend to remember colors 

with more saturation and lightness than the original stimulus. This 

suggests that observers might be discounting achromatic features, 

such as shadows and specular highlights. This was taken into 

account when generating the eight color patches, as shown in the 

process below. Color patches were obtained from the downsampled 

16x16 image because the pixels present in that image would be 

present in all other versions of the photo. The process for generating 

color choices was as follows: 

1. Select the most saturated pixel, the most chromatic pixel, 

and calculate the image’s average color. Add all three to 

the set of color choices. 

2. Segment the image into regions (for human faces, the 

regions were: left cheek, right cheek, chin, neck, and 

nose). Repeat step 1 for each region. 

3. Remove colors that are closer than 3 ΔE00 in CIELAB 

space to any other color in the set. This threshold was 

selected because a difference of about 2.5 – 3.0 ΔE00 has 

been determined to be just perceptible in images. 

4. If more than 8 colors remain, alternate between the darkest 

and lightest colors (begin with whichever is furthest from 

the average) and iteratively delete colors until 8 remain. 

5. If there are fewer than 8 colors in the set, iteratively add 

colors that are midpoints between the colors in the set. 

Repeat steps 3 and 4 on the new colors until 8 remain. 

For this process, pixels that were not part of the object of 

interest (ie. the background) were not included when averaging 

colors or selecting most chromatic/saturated colors. Figure 3 shows 

the eight colors that were generated for the stimuli in Figure 2. 

 

 
Figure 3. CIELAB coordinates of eight color choices. 

Procedure 
 The experiment was divided into four sections: shuffled 

stimuli, 16x16 stimuli, 64x64 stimuli, and full resolution images. 

The four sections were always presented in the same order so that 

observers would be unaware of the context of the objects in the 

shuffled and lower resolution images. Each section had 20 images 

for a total of 80 trials. Observers were presented with 4 training 

images before having their responses recorded. Images within each 

section were presented in a random order. Each trial began with a 

blank screen for 1 second, followed by the stimulus for 1 second, 

then the blank screen again for 1 second. Then, the observer was 

shown eight color patches, displayed in a random order each time, 

from which they selected one using a mouse cursor. The timing of 

each trial is shown in Figure 4. Maule et al [4] have shown that this 

process of rapid presentation is sufficient for observers to reproduce 

average hue over a given array. 

 

 
Figure 4. Example timing of a single trial. 

Results 
Figure 5 shows the observers’ mean color choice for one set of 

photos in the online experiment. The solid color bordering each 

image is the average selection observers made for the corresponding 

image. Notice that the mean color choice becomes progressively 

darker as more context is added. This could be attributed to the 

amount of skin that contains specular highlights; in the scrambled 

image, that context is unknown, and so a lighter color might be 

selected in that image. This trend, however, was inconsistent across 

different photographs. See Figure 6 for the opposite effect; 

observers’ choices become progressively lighter as more context 

was introduced. One might attribute this difference to the amount of 

skin that is cast in shadow, and that once that context is understood, 

the observer removes the shadow from their judgments. Most photos 

of subjects other than Caucasians exhibited this effect: the image 

became either progressively lighter or darker. 

Observer responses to photos of Caucasian subjects exhibited 

less variation in lightness and more variation in chroma as more 

context was introduced. Figure 7 shows the average results of a 
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Caucasian subject with significant pinkish blotches. Observer 

responses decreased in chroma as context was introduced, 

suggesting the possibility that observers place less value on 

temporary skin colorings when judging representative color, such as 

the pinkish tints from blush or sunburn. It is also worth noting that 

color options contained less variation in lightness for Caucasian 

photos compared to photos of other subjects. L* values for color 

choices for Figure 5, Figure 6, and Figure 7 ranged from 13.4 to 

37.6, 31.7 to 57.4, and 52.4 to 66.4, respectively. 

Figure 8, Figure 9, and Figure 10 show nested histograms of 

observer responses per color patch. Blue bars represent total 

responses for the corresponding color across all trials, while the 

colored bars nested within show the total number of times that color 

was selected based on the trial block (from left to right: shuffled, 

16x16 downsampled, 64x64 downsampled, full resolution). Notice 

that observer responses were distributed noisily across all images. 

Observing overall average choices does not seem to reveal much, 

however, observing averages based on context reveals some trends. 

In Figure 9, for example, color #1 and color #8 see a massive change 

in responses when looking at the scrambled image versus the images 

that include the context of a human face. 

 Figure 11 and Figure 12 give a similar overview of one of the 

natural objects (tomato) included in the study. In this study, full 

resolution images of natural objects show the entire object rather 

than a small region, which must be considered when analyzing the 

results. In this set of images, it is probably not obvious to the 

observer that they’re looking at a tomato until the full context image 

is shown. Observer responses progressively increased in lightness 

as context was shown by approximately 1 L* per level of context. 

Observer responses varied in a*, with trial 3 having the “reddest” 

response and trial 4 having the “greenest” response. We can 

speculate that the observer may be discounting the red accents in the 

full resolution image. 

 It is also important to consider the limitations of presenting 

only eight colors to the observer. Eight choices were presented 

because more than eight might overwhelm the observer, however, 

with only eight choices, observer selections are limited in lightness 

and chroma. An observer that might want a redder color choice for 

the tomato will be limited in lightness choices among the color 

choices that have a higher a* value. 

 

 
Figure 5. Average color response for one set of images of an African American 
subject. The strip of color surrounding each image indicates the average 
response for that image. Observer responses became progressively darker as 
more context was introduced. 
 

 
Figure 6. Average color response for one set of images of an Indian subject. 
Observer responses become progressively lighter as more context was 

introduced. 
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Figure 7. Average color response for one set of images of a Caucasian subject. 
Observer responses were highly chromatic for the shuffled image, but once the 
context of a human face was introduced, responses became less chromatic. 

Figure 8. Histogram of observer responses corresponding to Figure 5. The 
colors of the bars contained within the blue bars are equivalent to the RGB 
values shown to the observer. 
 

 
Figure 9. Histogram of observer responses corresponding to Figure 6. Notice 
that color #1 was rarely selected for the shuffled image, but selected frequently 
once the context of the human face was introduced. The opposite phenomenon 
occurs for color #8, the darkest choice in the set. 
 

 
Figure 10. Histogram of observer responses corresponding to Figure 7. Color 
#5, the most chromatic color in the set, is predominantly selected for the 

shuffled image. 
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Figure 11. Average color responses for one set of images of a tomato. Observer 
responses became progressively lighter, but varied on the a* dimension. 
 

 
Figure 12. Histogram of observer responses corresponding to Figure 11. Notice 
the large increase in popularity for color #4 in the downsampled 64x64 image 
and the increase in color #6 for the full resolution image. 
 

It is worth noting that observers selected color patches in the 

same position as their previous selection more often than color 

patches in other positions. With eight color patches, one would 

expect that colors in the same position as the previous trial would be 

selected 12.5% of the time, however, observers selected the color 

from the same position as their previous choice 14.5% of the time. 

While this increase was modest, it suggests that observers might 

continue looking at the portion of the screen of their last selected 

color, causing them to notice the color patch under their mouse 

cursor sooner than the rest, or they may feel less inclined to move 

their mouse if the color patch under the mouse seemed reasonable. 

In the onsite experiment (n = 16), observers selected the most 

chromatic color choice 15.42% of the time and the most saturated 

color choice 10.33% of the time. Observers in the online experiment 

(n = 40) selected the most chromatic color choice 12.78% of the time 

and the most saturated color choice 12.81% of the time. This is 

contrary to our prediction that observers will be drawn to the most 

saturated/chromatic pixel over the rest. The difference between the 

two groups could be due to the small sample size for the onsite 

experiment. 

After taking the experiment, observers reported that they felt 

one second was insufficient to observe the image to accurately select 

a representative color. While the experiment performed by Maule et 

al [4] showed that half a second should be sufficient, it could be 

argued that the more complex nature of the images in this 

experiment would require additional time. A follow-up experiment 

will assess the impact of increased observation time on color 

selections. The follow-up experiment will also assess observer 

repeatability of their color choices. 

Conclusions 
 While most images followed a trend of being viewed as either 

progressively lighter or progressively darker as more context was 

provided, it is unclear what factors determine why some images 

increase in representative lightness as context is introduced and 

others exhibit the opposite effect. It is possible that photos which 

exhibited higher proportions of perceived shadow versus perceived 

specular highlights is responsible for the increase in lightness from 

observer judgments, however, this requires further investigation. 

 It is important to note that observer responses were distributed 

noisily. This is consistent with the findings of Maule et al [4]. The 

reason for such high disagreement between observers is unclear but 

may be related to individual differences in strategies for determining 

representative color. 
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