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Abstract
Research on human lightness perception has revealed impor-

tant principles of how we perceive achromatic surface color, but
has resulted in few image-computable models. Here we exam-
ine the performance of a recent artificial neural network archi-
tecture in a lightness matching task. We find similarities between
the network’s behaviour and human perception. The network has
human-like levels of partial lightness constancy, and its log re-
flectance matches are an approximately linear function of log il-
luminance, as is the case with human observers. We also find that
previous computational models of lightness perception have much
weaker lightness constancy than is typical of human observers.
We briefly discuss some challenges and possible future directions
for using artificial neural networks as a starting point for models
of human lightness perception.

Introduction
Visual perception emerged through evolution because it

helps us to survive. For survival, it is often useful to perceive
properties of creatures and things in the environment, rather than
properties of our retinal images of them. Vision enables us to per-
ceive the distance, shape, and identity of objects, among many
other characteristics. One fundamental property is surface color,
which is determined by the proportion of light that a surface re-
flects at various wavelengths, regardless of what spectrum of light
happens to be illuminating it. Surface color is a multi-dimensional
property, and vision researchers often study perception of achro-
matic surfaces viewed under achromatic illumination as a simpli-
fied problem that nevertheless retains several of the features that
make color perception difficult and interesting. Reflectance is a
scalar property that represents the proportion of incident light re-
flected by a surface. Black surfaces have reflectances near zero,
white surfaces have reflectances near one, and grey surfaces have
values in between. Lightness has different definitions in different
research literatures, and in the present work we follow the con-
vention that lightness is the perceived reflectance of achromatic
surfaces seen under achromatic illumination [1]. Thus for our
purposes, lightness perception is the visual perception of black,
white, and grey surface color.

Lightness perception has been an active research area since
the beginnings of experimental psychology, and many studies
have shown the importance of features such as shadow bound-
aries and transparency cues for lightness [1]. Mathematical and
computational models of lightness perception in realistic scenes
have been more difficult to formulate, though, and there are few
such models.

Recently, work on artificial neural networks (ANNs) has

made progress on estimating surface reflectance in realistic scenes
[2, 3, 4]. These networks were not developed as models of human
vision. However, human lightness perception often relies on im-
plicit knowledge about natural scenes to make rational inferences
from retinal images [5, 6, 7]. This suggests that ANN approaches
to reflectance estimation may be useful starting points for norma-
tive models of human lightness perception, as ANNs also exploit
regularities in natural scenes to overcome the intrinsic ambiguity
of 2D images.

In the computer vision literature, ANNs that estimate re-
flectance are often evaluated using summary statistics, such as the
mean-squared error of reflectance estimates, averaged over pixels
and images. This is a useful way of quantifying network perfor-
mance, but it provides little insight into how similar networks are
to human vision. Here we examine the performance of a recent
ANN architecture [4] on a reflectance estimation task, and in ad-
dition to summary statistics of performance, we also report how
the network behaves in a lightness matching experiment of a kind
that has often been used to study human lightness perception. To
provide context for our results, we use the same approach to eval-
uate other relevant models [8, 9, 10].

Related work
Land and McCann’s [11] retinex model is one of the few

image-computable models of human lightness perception. It esti-
mates reflectance by integrating the derivative of luminance along
paths through an image, discarding small derivatives (assumed to
be due to illumination gradients) and retaining large derivatives
(assumed to be due to reflectance edges). Retinex is an impres-
sively long-lived model, and it has been developed further in more
recent variants [12]. It does have limitations, such as assuming
that lighting changes only gradually throughout a scene.

There are many image-computable models of brightness, de-
fined as perceived luminance [13]. In lightness research, bright-
ness models are sometimes evaluated as well [14, 6], given the
scarcity of image-computable models of lightness, and the weak-
ness of our current understanding of the relationship between
lightness and brightness. Here we consider one such model, the
oriented difference of Gaussians (ODOG) model, which oper-
ates by normalizing contrast energy in orientation and spatial fre-
quency passbands [10, 15],

Dakin and Bex [9] developed an image-computable lightness
model that normalizes the Fourier power spectrum of a stimulus
image to match the 1/ f α spectrum that is typical of natural im-
ages. There are many spatial filtering models of brightness, and
Dakin and Bex’s model is an interesting case where filtering is the
basis of a lightness model (though also see [16]). Dakin and Bex
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equivocate on whether their model predicts lightness or bright-
ness, and here we evaluate it as a model of lightness.

Reflectance estimation is a classic problem in computer vi-
sion, where it is part of the more general problem of ‘intrinsic
image decomposition’, in which reflectance, shading, and some-
times shape are estimated from a single image. For example, Bar-
ron and Malik [17] developed a Bayesian algorithm for estimating
surface color, shape, and lighting, guided by statistical knowledge
about natural scenes. Recently there have been several ANN ap-
proaches to intrinsic image decomposition. The network we use
below is based on Yu and Smith’s InverseRenderNet [4], which
used simple priors and self-supervised learning to train a network
using web-crawled images. The network estimated reflectance,
surface normals, and global lighting. Interestingly, this network
first estimated reflectance and local surface orientation, and then
used these estimates to infer global lighting; this is the opposite
of the order in many models of human vision [5]. Other ANN
approaches to reflectance estimation include [2, 3]. Flachot et
al. [18] have evaluated ANNs as models of color constancy, and
Storrs et al. [19] have examined similar approaches to material
perception.

Methods
Network architecture. We used PyTorch to implement the

first stage of InverseRenderNet, which maps a luminance image
to an equally sized color image [4]. Instead of an n× n× 3 out-
put layer representing surface color, we used an n× n× 1 layer
representing achromatic reflectance . The resulting network was
a 30-layer convolutional neural network (CNN) in an hourglass
architecture with skip connections. To indicate that the network
is derived from but also different from InverseRenderNet, we call
it IRNet.

We adapted this 30-layer network from InverseRenderNet,
and it is an interesting question whether so many layers are nec-
essary. In future work, we will explore alternative architectures.

Training data. We used Blender [20], an open-source ren-
dering package, to render 100,000 training images, 5,000 valida-
tion images, and 5,000 test images. We used images of simple
geometric objects, as a first step in exploring the hypothesis that
many properties of lightness perception are due to generic fea-
tures of 3D scenes, such as cast shadows and occlusion, rather
than to more subtle properties of genuine natural scenes. Each
scene contained 20 randomly positioned, greyscale geometric ob-
jects (spheres, cubes, and tori; Figure 1a). Each object had prob-
ability 0.5 of being colored solid grey, with reflectance uniformly
drawn from the interval [0.1, 0.9], and probability 0.5 of having
a greyscale Voronoi texture. The background consisted of three
planes, intersecting at randomly chosen angles between 80◦ and
100◦, and each independently assigned a randomly chosen re-
flectance from [0.1, 0.9]. Lighting consisted of an ambient source
and a directional (i.e., infinitely distant) source. The direction and
intensity of the directional source were randomized across scenes,
as was camera position. All surfaces were Lambertian, and ren-
dering did not include interreflections. We rendered a luminance
image and a reflectance image for each scene. The size of each
image was 256 × 256 pixels.

Training. We trained IRNet to infer reflectance images from
luminance images. We used the Adam optimizer [21] with a
mean-squared error criterion, and a batch size of five images.

Batches were randomly sampled without replacement from the
100,000 training images, and training continued for seven epochs,
by which time the error on the 5,000 validation images had
asymptoted.

Evaluation. We measured the root-mean-square (RMS) error
of IRNet’s reflectance estimates on the 5,000 test images, which
were not used during training.

Using separately rendered stimuli (described below), we also
measured the network’s Thouless ratio, which is a measure of per-
ceptual constancy [22]. In a lightness matching task, the Thouless
ratio is

τ =
logrM − logr0

logrR − logr0
(1)

Here rM is the match reflectance chosen by the observer, rR is the
reference reflectance, and r0 is the match reflectance that would
be chosen by an observer who has no lightness constancy and
simply matches image luminance. This ratio measures the ex-
tent to which perceived reflectance is independent of illumina-
tion. If an observer is completely lightness constant (rM = rR),
and reflectance estimates are independent of illumination, then
the Thouless ratio is one. If an observer completely confounds re-
flectance and image luminance (rM = r0), so that for example dou-
bling illumination (and hence image luminance) also doubles per-
ceived reflectance, then the Thouless ratio is zero. Values between
zero and one represent degrees of partial lightness constancy.

To measure Thouless ratios, we used Blender to render im-
ages of two probe cubes and a sphere (Figure 2a). The reference
cube was located in the shadow of the sphere, and the test cube
was located outside the shadow. We measured Thouless ratios
for reference cube reflectances 0.1, 0.2, and 0.4. For each ref-
erence cube reflectance, we rendered scenes where the test cube
had reflectance 0.0, 0.1, 0.2, 0.4, 0.8, or 1.0, and the directional
light produced illuminance 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, or 1.5 lux
on a frontoparallel surface (hence 6×7 = 42 scenes). The ambi-
ent light had fixed luminance 0.5 cd/m2 in all directions, and so
generated illuminance π/2 lux on unobstructed surfaces. The il-
luminance at the upper surface of the reference cube (in shadow)
was determined by the ambient light intensity, whereas the illumi-
nance at the upper surface of the test cube included contributions
from both the directional light and the ambient light. We inferred
the illuminances by dividing the rendered image luminance of the
upper faces of the reference and test cubes by their known re-
flectances (and multiplying by the factor of π required by the def-
initions of photometric units). The background panel reflectances
were the same in all scenes (floor 0.25; left wall 0.45; right wall
0.55). Under each directional light intensity, we recorded the net-
work’s mean output over the pixels of the upward-facing surface
of the reference cube (reflectance fixed) and the test cube (re-
flectance varied across scenes). We then used interpolation to find
the test cube reflectance required for the network to have the same
output at the reference and test cubes. We took this to be the net-
work’s ‘match’ setting, indicating the actual test cube reflectance
for which the network assigned the same perceived reflectance to
the reference and test cubes. We found this match reflectance un-
der all seven directional lighting intensities. Equation (1) implies
that if the Thouless ratio τ is constant across changes in illumi-
nance, then log match reflectance is an affine function of log illu-
minance at the test patch, with slope m = τ − 1 (see Appendix).
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We found IRNet’s match reflectance for each of the seven direc-
tional lighting intensities, fitted a least-squares regression line to
log match reflectance versus log illuminance at the test patch, and
used the inverse relationship τ = m+1 to find the Thouless ratio.
We repeated this procedure for each reference cube reflectance
(0.1, 0.2, and 0.4), resulting in three Thouless ratios.

Model comparisons. We used the same methods to evalu-
ate three additional models: a variant of retinex [8], Dakin and
Bex’s band-pass normalization model [9], and the ODOG bright-
ness model [10, 15].

Results
Figure 1 shows examples of luminance images, ground truth

reflectance images, and IRNet’s response to the luminance im-
ages. Images of the network’s response show that it largely
removed cast shadows from the luminance image, though with
residual mottling in some places. It also largely removed shad-
ing, the variation in luminance due to variations in surface ori-
entation relative to the light source. Figure 1d shows scatterplots
of estimated reflectance versus true reflectance at 1,000 randomly
chosen pixels in each image. Estimated reflectance was approxi-
mately proportional to true reflectance. Across 5,000 test images
like the ones shown, the median RMS reflectance error was 0.063.
For comparison, we found that a model that simply maps each lu-
minance image to fill the reflectance range [0.1, 0.9] via an affine
transformation had a median RMS error of 0.22.

Figure 3 shows corresponding results for retinex, the Dakin-
Bex model, and ODOG. Here shading and cast shadows remain
clearly visible in the model outputs. Scatterplots show that model
output increased as a function of true reflectance, but the scat-
ter was much greater than for IRNet. Furthermore, these model
outputs were in arbitrary units. We converted model outputs to
reflectance estimates by applying the affine transform that mini-
mized the resulting RMS error between reflectance estimates and
true reflectance. After this transformation, the median RMS re-
flectance error across the 5,000 test images was 0.16 for all three
models. This is substantially higher than the error found with IR-
Net, and only moderately better than the model described above
that simply applies an affine transformation to luminance. How-
ever, it is also true that IRNet was trained specifically on this stim-
ulus set, unlike the three other models. In future work, it will be
important to test how well all four models perform outside the
stimulus set used here.

Figure 2 shows results for IRNet in the Thouless ratio exper-
iment. Like human observers, the network had partial lightness
constancy, and test patches in higher illumination were judged
to have slightly higher reflectance. Furthermore, log match re-
flectance declined approximately linearly as a function of log il-
luminance. Thouless ratios for reference reflectances 0.1, 0.2, and
0.4 were 0.69, 0.75, and 0.69, respectively. Human observers have
been found to have Thouless ratios in the range 0.35 to 0.75 in
sparse scenes like the ones used here [1, p. 31], and higher val-
ues in richer scenes [23]. Thus although we have not measured
Thouless ratios for human observers in these scenes, the values we
found for IRNet are broadly similar to what we might expect from
humans, and the approximately linear relationship between log
match reflectance and log illumination is also typical of human
observers [23]. Thouless ratios for human observers also some-
times show moderate variations from one reference reflectance to

another [23].
Figure 4 shows corresponding results for the other three

models. In all cases, lightness constancy was weak. The Thouless
ratios given at the right of each panel show that in most cases, the
models’ behaviour was close to luminance matching (τ = 0). This
is much weaker lightness constancy than is typical of human ob-
servers, even in simple scenes, but in future work we will establish
a point of comparison by measuring human lightness constancy in
the same scenes used to test the computational models.

Discussion
Practically all research to date on human lightness perception

has been guided by parametric models that describe how light-
ness depends on selected properties (e.g., surface orientation) in a
limited range of scenes, or by qualitative observations about how
various image features affect lightness. Without a doubt, these are
valuable approaches, and they have revealed much about how we
perceive lightness. At the same time, another goal of research on
lightness should be to formulate image-computable models that
predict what people see in complex, realistic scenes. Progress to-
ward this goal has been limited. Our examination of a recent ANN
architecture suggests that such networks may be useful points of
departure for a new class of models of human lightness percep-
tion. For example, we find that IRNet’s log reflectance matches
are an approximately linear function of log illuminance (Figure
2), as is the case for human observers. We also find that IRNet
has Thouless ratios comparable to those often found with human
observers. To continue this approach to modelling lightness, there
are certainly more tests that should be done to compare ANNs
to human observers. Are ANNs highly tolerant of lighting in-
consistencies, as human observers are [24]? Are they suscepti-
ble to the same lightness illusions as human observers? Do they
generalize well beyond the training stimuli? Furthermore, black-
box algorithms like the one used here are not very enlightening
when considered as models, and more interpretable architectures
are needed. Despite these challenges, we find it highly appealing
to have a large new class of image-computable, data-driven mod-
els that predict lightness in complex scenes, and we suggest that
this is a promising way forward for modelling lightness.

Appendix
We assume that all surfaces are Lambertian. Let the ref-

erence cube have log reflectance rR, log illuminance iR, and
log luminance ℓR = rR + iR − logπ . (In SI units, the lumi-
nance (cd/m2) of a Lambertian surface equals reflectance (unit-
less) times illuminance (lux) divided by the constant π cd / m2

· lux.) Let the observer’s match setting at the test cube be log
reflectance rM , under log illuminance iM , and thus have lumi-
nance ℓM = rM + iM − logπ . If the observer has no lightness
constancy and simply matches luminance at the reference and test
cubes, then their match setting r0 satisfies r0 + iM = rR + iR, or
r0 = rR + iR − iM . If we substitute this expression for r0 into
equation (1) and solve for rM , we find rM = (τ −1)(iM − iR)+rR,
which is an affine function of iM with slope m = τ −1.
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Figure 1. Sample stimuli and IRNet responses. (a) Luminance images. (b) Ground truth reflectance images.

(c) IRNet’s response to luminance images. (d) Scatterplot of IRNet’s pixelwise response versus true reflectance.
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Figure 2. Thouless ratio experiment. (a) Two examples of stimuli with different directional lighting intensities. The right cube (in shadow) is the reference cube,

and the left cube is the test cube. (b) IRNet’s match reflectance as a function of illuminance at the test cube, for three different reference reflectances. The

numbers at the right of the panel, above each line, are Thouless ratios for the three reference reflectances.
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Figure 3. Responses of three additional models. The first three columns show model responses to the three luminance images shown in Figure 1a. The fourth

column shows scatterplots of pixelwise model response versus true reflectance, for the image in the first column.
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Figure 4. Thouless ratio experiment for the three additional models. The numbers at the right, above each line, are Thouless ratios for the three reference

reflectances.
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