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Abstract 
Illuminant estimation is critically important in computational 

color constancy, which has attracted great attentions and motivated 

the development of various statistical- and learning-based methods. 

Past studies, however, seldom investigated the performance of the 

methods on pure color images (i.e., an image that is dominated by a 

single pure color), which are actually very common in daily life. In 

this paper, we develop a lightweight feature-based Deep Neural 

Network (DNN)model—Pure Color Constancy (PCC). The model 

uses four color features (i.e., chromaticity of the maximal, mean, the 

brightest, and darkest pixels) as the inputs and only contains less 

than 0.5k parameters. It only takes 0.25ms for processing an image 

and has good cross-sensor performance. The angular errors on 

three standard datasets are generally comparable to the state-of-

the-art methods. More importantly, the model results in significantly 

smaller angular errors on the pure color images in PolyU Pure 

Color dataset, which was recently collected by us. 

Introduction 
Computational color constancy aims to remove the color cast 

of illumination in an image, so that the colors appear as they are 

captured under a canonical illuminant. Therefore, the estimation of 

the scene illuminant is critically important, which is generally 

achieved using statistical- or learning-based methods [1]. Estimating 

the illuminant of a scene is actually an ill-posed problem, since the 

solution lacks uniqueness and stability. Thus, the various methods 

and algorithms generally make some assumptions about the 

statistical characteristics of the expected illuminants and/or the 

colors of stimuli in a scene. Conventional statistical-based methods 

typically make assumptions about the colors of stimuli in a scene, 

such as white patch [2], gray world [3], shades of gray [4], bright 

[5], and PCA-based [6] shed variant reflectance assumptions. 

Though these methods can be implemented very efficiently in 

practice, their assumptions are commonly violated in real scenes, 

which results inaccurate illuminant estimations and poor image 

quality. For example, when a captured scene is dominated by one 

single color, all the above assumptions would be violated. 

Recently, Deep Neural Network (DNN) learning-based 

methods have been applied to the color constancy problem, which 

has been found to have good performance. Bianco et al [7] was the 

first to show the great potential to apply a DNN-based model on 

illuminant estimation. A captured scene was divided into many 

small regions, and the scene illuminant is estimated based on the 

estimations made from each small region. Hu et al [8] further found 

that the illuminants estimated from the ambiguous regions (i.e., a 

region that is dominated by a single pure color) could be 

significantly different from those estimated from the valuable 

regions (i.e., the regions that contain semantic information). This is 

mainly because a given set of camera rgb values could be produced 

by a surface having such rgb values under a white illuminant, or by 

a white surface under an illuminant with such rgb values. 

 

Figure 1. Examples of pure color images (i.e., an image that is dominated by a 
single pure color), which are contained in “PolyU Pure Color” dataset collected 
by us. (note: these images are from the cameras directly) 

Such ambiguous regions could also happen to the entire 

captured scene, with the entire image containing a pure color (i.e., 

pure color images), making the images lack semantic information 

for estimating the illuminant. Though such pure color images 

commonly happen in daily life, as shown in Figure 1, and the 

illuminant estimation is non-trivial for these images, none of the past 

studies have investigated the performance of the methods on pure 

color images, and none of the existing models was developed by 

specifically considering the characteristics of pure color images. 

With the above in mind, we propose a Pure Color Constancy 

(PCC) method, a lightweight feature-based DNN model, to 

significantly improve the performance on pure color images without 

affecting the performance on typical scenes containing a single 

illuminant. 

The PCC method 
Inspired by the “Convolutional Color Constancy” (CCC) 

method [9], which identifies a 2-D log-chromaticity as a critical 

feature for illuminant estimation, we aim to estimate the illuminant 

color based on important color features. Though a similar concept 

was adopted in a recent work [10], which used a regression tree 

learning-based method with four features (i.e., the average 

chromaticities, the brightest color chromaticities, the dominant color 

chromaticities, and the chromaticity mode of the color palette), 

suggesting the effectiveness of using simple features for illuminant 

estimation. This method, however, requires a great number of 

parameters and computational power, making it impossible for real-

world deployment. 
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Figure 2. Illustration of the four important color features—normalized brightest, 
maximal, mean, and darkest chromaticities. (a) An identical scene under two 
illuminants with large differences of the four features; (b) Comparison between 

a normal color image and a pure color image, with the latter having the four 
features clustered together. 

Our method was developed based on an observation that the 

normalized maximal, mean, brightest, and darkest values of each 

channel vary with the illuminant, as illustrated in Figure 2(a). 

Therefore, the four features can be used to estimate the illuminants. 

Moreover, a pure color image tends to have these four features 

clustered together in the chromaticity space, as illustrated in Figure 

2(b). Therefore, the PCC model was designed to have four color 

features, in terms of normalized chromaticity {𝑟, 𝑔} = {𝑅, 𝐺}/(𝑅 +
𝐺 + 𝐵), as the inputs, so that they are intensity invariant [10]. These 

four chromaticity features are: (1) Max chromaticity: the 

chromaticity of maximum RGB values,  {𝑟𝑚𝑎𝑥, 𝑔𝑚𝑎𝑥} =
{𝑅𝑚𝑎𝑥 , 𝐺𝑚𝑎𝑥}/(𝑅𝑚𝑎𝑥 + 𝐺𝑚𝑎𝑥 + 𝐵𝑚𝑎𝑥)  (2) Mean chromaticity: the 

chromaticity of mean RGB values, (3) Bright chromaticity: the 

chromaticity of the pixel having the largest R+G+B values, and (4) 

Dark chromaticity: the chromaticity of the pixel having the smallest 

R+G+B values. These four features also correspond to the 

assumptions of the four widely used illuminant estimation 

algorithms (i.e., white patch [2], gray world [3], bright [5], and 

PCA-based methods [6]). 

 

Figure 3. Structure of the proposed PCC model, using the four chromaticity 
features as the inputs. Each hidden layer has a corresponding ReLU 
operation. 

A lightweight neural network model was then designed, which 

was inspired by [11]. The model only contains two or five dense 

layers, with each layer containing only eight neurons, and a 

corresponding ReLU operation. There are around 150 and 400 

parameters for the two- and five-layer networks respectively. The 

output of the model is the estimated chromaticity (r,g) of the 

illuminant in the 2D chromaticity color space, with b calculated as 

1-r-g. Figure 3 shows the structure of the proposed PCC model. 

The proposed PCC based on an unoptimized 
GPU version only takes 0.25 ms to process an 
image, which is around 12× faster than the 
FFCC method [9] and 100× faster than the FC4 
method [8]. Moreover, the number of the 
parameters is around 20 to 50 times smaller 
than that of the FFCC and around 10,000 
times smaller than that of the FC4 
method.Error! Reference source not 
found.Experiment 

Settings 
The PCC network was trained in PyTorch [12], and Adam [13] 

was adopted as the optimization algorithm, with a learning rate of 

10-3. The batch size was set to 1, and the number of epoch was set 

to 8,000. The standard angular error, as calculated using Eq (1), was 

adopted as the loss function. 

𝑒𝑟𝑟𝑜𝑟 =
180

𝜋
arccos (

�̂�∙𝐿

‖�̂�‖∙‖𝐿‖
) (1) 

where: �̂� is the estimated illuminant, and 𝐿 is the ground-truth 

illuminant. 

Datasets and data augmentation 
The network was implemented on three datasets, RECommend 

(REC-2018) Color Checker dataset [14], NUS-8 dataset [10], and 

Cube+ dataset [17]. The REC-2018 dataset, which is an updated 

version of Gehler-Shi dataset [15,16], contains 568 indoor and 

outdoor images captured using two cameras (i.e., Canon 1D and 

Canon 5D). The NUS-8 dataset contains 1736 images captured by 

eight different cameras, with each camera capturing around 210 
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images. The Cube+ dataset contains 1707 images captured by a 

Canon 550D camera. 

 

Figure 4. Illustration of how the augmented illuminants were selected. The red 

dots are the chromaticities of a series of illuminants selected from a real 
training set. The augmented illuminants were randomly derived by limiting the 
chromaticity distance between the augmented and selected illuminants to be 
smaller than 0.01, which is labeled as the green circle. 

In order to further increase the number of images, data 

augmentation was applied using an AWB-aug method, which was 

based on two past studies [8,18]. The AWB-aug was applied by 

multiplying a 3 × 3 diagonal matrix M with the diagonal entries of 

[ra/ro,ga/go,ba/bo] to an original image Io to derive an augmented 

image Ia (i.e., Ia = Io × M). Since the empirical values used in the 

past work (e.g., FC4 [8] used random RGB values for data 

augmentation) may lead to some illuminants that do not exist in 

reality, we carefully selected a series of illuminants from all the real 

illuminants captured in the corresponding dataset. Based on these 

selected illuminants, the augmented illuminants were randomly 

derived by limiting the chromaticity difference to be smaller than 

0.01, as illustrated in Figure 4. 

The standard three-folded validation method was used on these 

three datasets with the data augmentation. 

Data analyses and results 
The performance of the proposed PCC model was compared 

with other widely used methods, such as White Patch(WP) [2], Gray 

World (GW) [3], Shades of Gray (SoG) [4], Bright Pixels with 

(Bright) [5], Cheng PCA (PCA) [6], Corrected Moment with 19 

colors (CM) [17], Regression Tree (RT) [10], CCC [20], FFCC with 

model Q [9], CLCC [18], based on the standard angular error 

between the estimated and ground-truth illuminants [1], with the 

mean, median (Med.), trimean (Tri), best 25%, and worst 25% 

values reported. 

Tables 1, 2, and 3 summarize the performance of the various 

methods and the proposed PCC model (the results in Tables 2-5 are 

all based on the 5-layer PCC model) for the three datasets. It should 

be noted that the training and evaluation were performed on each of 

the eight cameras in the NUS-8 datasets, while the values reported 

in Table 2 are the average values across all the eight cameras. For 

the Cube+ dataset, two additional methods—Color Dog (CD) [21] 

and Color Beaver (CB) [22]—were also included in the analyses and 

comparison. 

In Table 1, we also summarize the number of the parameters of 

each method. It can be observed that the size of the proposed PCC 

model is significantly smaller than that of the state-of-the-art 

methods, while the performance was relatively similar. 

 

Table 1 Summary and comparison of the model performance, in 
terms of the angular error, on the REC-2018 Color Checker 
dataset. (Note: the results of the various methods are extracted 
from [8] and [18]). The last column summarizes the number of 
the parameters in each method. 

Method Mean Med. Tri. Best 
25% 

Worst 
25% 

No. of 
Para 

WP 7.55 5.68 6.35 1.45 16.12 - 

GW 6.36 6.28 6.28 2.33 10.58 - 

SoG 4.93 4.01 4.23 1.14 10.20 - 

Bright 3.98 2.61 - - - - 

PCA 3.52 2.14 2.47 0.50 8.74 - 

CM 2.86 2.04 2.22 0.70 6.34 57 

RT 2.42 1.65 1.75 0.38 5.87 31.5M 

CCC 1.95 1.22 1.38 0.35 4.76 0.7K 

FFCC 1.99 1.31 1.43 0.35 4.75 8.2K 

Bianco 
CNN 

2.36 1.98 - - - 0.15M 

FC4 1.77 1.11 1.29 0.34 4.29 4.34M 

CLCC [18] 1.44 0.92 1.04 0.27 3.48 1.73M 

PCC 
(2-layer) 

2.92 2.07 2.32 0.68 6.93 0.15K 

PCC 
(5-layer) 

2.49 1.59 1.82 0.45 5.98 0.4K 

Table 2 Summary and comparison of the model performance on 
the NUS-8 dataset. (Note: the results of the various methods 
are extracted from [8] and [18]). 

Method Mean Med. Tri. Best 
25% 

Worst 
25% 

WP 10.62 10.58 10.49 1.86 19.45 

GW 8.42 7.05 7.37 2.41 16.08 

SoG 3.40 2.57 2.73 0.77 7.41 

Bright 3.17 2.41 2.55 0.69 7.02 

PCA 2.92 2.04 2.24 0.62 6.61 

CM 3.03 2.11 2.25 0.68 7.08 

RT 2.36 1.59 1.74 0.49 5.54 

CCC 2.38 1.48 1.69 0.45 5.85 

FFCC 2.06 1.39 1.53 0.39 4.80 

FC4 2.12 1.53 1.67 0.48 4.78 

CLCC [18] 1.84 1.31 1.42 0.41 4.20 

PCC 2.29 1.57 1.74 0.49 5.30 

Table 3. Summary and comparison of the model performance 
on the Cube+ dataset. (Note: the results of the various methods 
are extracted from [24]). 

Method Mean Med. Tri. Best 
25% 

Worst 
25% 

WP 9.69 7.48 8.56 1.72 20.49 

GW 7.71 4.29 4.98 1.01 20.19 

SoG 2.59 1.73 1.93 0.46 6.19 

CD 3.32 1.19 - 0.22 10.22 

CB 1.49 0.77 - 0.21 3.94 

FFCC 1.38 0.74 0.89 0.19 3.67 

C5 1.39 0.79 0.93 0.24 3.55 

PCC 1.79 1.02 1.23 0.25 4.61 

Generalization 
Since the spectral sensitivity functions generally vary with 

cameras, the traditional CNN-based models are device-dependent. 
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The proposed PCC model, however, only uses four simple color 

features as the inputs. As the variations of these four features with 

the cameras are relatively smaller, the model should be able to be 

used across cameras. 

This was validated by training the model using the images 

captured by a NIKON-D40 camera in the NUS dataset, with the 

performance evaluated on the images in the Cube+ dataset without 

any processing. Table 4 compares the performance of the various 

methods, including the state-of-art C5 [23] and Quasi [24] methods. 

It is worthwhile to point out that the number of the parameters in the 

PCC model is only around 1/10 of that in the C5 model, but the 

results are generally comparable. 

Table 4 Summary and comparison of the model performance 
for generalization on the Cube+ dataset. The three smallest 
values are highlighted with a gray background. 

Method Mean Med. Tri. Best 
25% 

Worst 
25% 

WP 9.69 7.48 8.56 1.72 20.49 

GW 3.52 2.55 2.82 0.60 7.98 

SoG 3.22 2.12 2.44 0.43 7.77 

Quasi 2.69 1.76 2.00 0.49 6.45 

FFCC 2.69 1.89 2.08 0.46 6.31 

C5(m=1) 2.60 1.86 2.10 0.55 5.89 

C5(m=7) 2.10 1.38 1.40 0.41 4.97 

PCC 2.19 1.23 1.53 0.41 5.50 

 
Figure 5. Examples of pure color images in the NUS-8 and Cube+ datasets. The values are the angular errors derived using the proposed PCC model. 

Performance on “PolyU Pure Color” dataset 
The datasets mentioned above have a small number of pure 

color images. Figure 5 shows some examples from the NUS-8 and 

Cube+ datasets, with the angular errors derived using the proposed 

PCC model being labeled, which are much smaller than those 

derived using the other conventional methods. 

We built a dataset “PolyU Pure Color”, which contains pure 

color images captured using a Huawei P50 Pro smartphone. 

Currently, the dataset contains 102 pure color images, including 

outdoor scenes (e.g., green grass, blue sky, flowers) and indoor 

scenes (e.g., fabrics and walls under illumination). The images 

shown in Figure 1 are from this dataset. 

Table 5 Summary and comparison of the model performance on 
the PolyU Pure Color dataset, a newly collected dataset 
containing pure color images. 

Method Mean Med. Tri. Best 
25% 

Worst 
25% 

WP 9.64 8.78 8.93 2.78 17.25 

GW 10.37 8.14 8.67 2.60 21.40 

SoG (p=3) 9.66 8.03 8.13 2.38 19.92 

Bright (p=5) 8.96 6.92 7.24 2.01 19.57 

PCA (p=3.5) 8.32 6.72 6.81 1.74 18.4 

FC4 (AlexNet) 3.83 3.02 3.47 1.16 8.03 

PCC 2.91 1.39 1.83 0.42 7.30 

The training and evaluation were repeated on this dataset, with 

Table 5 summarizing the performance of the proposed PCC model, 

together with other methods. It can be observed that the performance 

of the PCC model is significantly better than the other methods, 

including the FC4 [8] method. 

Conclusion 
We propose a PCC model for illuminant estimation. The model 

is a feature-based lightweight DNN model, which uses four color 

features as the inputs, including the chromaticity of maximal, mean, 

the brightest, and darkest pixels in an image. In particular, the model 

was leveraged from a learning-based method in the log-chroma 

domain [20], and an important observation that the maximal and 

mean values of the RGB channels in a pure color image should be 

very similar. Thus, it was expected to have much better performance 

for pure color images, which was verified using a recently collected 

dataset (i.e., PolyU Pure Color dataset), and also for other typical 

images, which was verified using the three existing datasets (i.e., 

REC-2018 Color Checker, NUS-8, and Cube+ datasets). Also, the 

model has a good cross-sensor performance. More importantly, such 

a good performance is achieved with around 0.2~0.4k parameters in 

the model, and only takes 0.25 ms for processing an image with an 

unoptimized Python implementation. 
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