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Abstract
Planck’s law and Wien’s approximation of this law are both

widely used to calculate the spectral radiation of a black-body based
on its color temperature. The Wien approximation is a slightly simpler
equation and has the advantage that the logarithm of a Wien light can
be written as a linear sum of two basis vectors plus an offset (a fact
that is exploited in some computer vision algorithms).

In this paper, we show that the Wien formulation can, in general,
be used to approximate Planckian lights assuming there is a mapping
function taking Planckian to corrected Wien temperature. Significantly,
we show that a correction function f () exists and for the range of
color temperatures of interest the Wien spectrum calculated for f (T )
has a very similar shape to the actual spectrum of a Planckian light
with temperature T. We find that defining f () as a polynomial-type
function models to a good extent the relationship between the color
temperatures of Planckians and their closest Wien-Planckians lights
both in terms of the angular error between their two respective spectral
functions and their projections to u’v’ coordinates.

Introduction
The spectral density of a black-body radiation is described by

Planck’s law, and is based on a single parameter, the color temperature
(measured in Kelvin) [16]. The higher this temperature the cooler
the color of the light: moving from 3000 to 7000 to 10000 Kelvin
the corresponding Planckian lights appears yellowish, whitish and
bluish. In chromaticity space, the Planckian locus can be obtained by
connecting the chromaticity points of a series of Planckian lights with
increasing color temperature. For brevity, we will sometimes refer to
a color temperature in Kelvin and, equivalently, using the abbreviation
’K’ e.g. 3000 Kelvin and 3000K denote the same color temperature.

Wien’s approximation of black-body radiation [19, 22] is an
alternative formula for calculating the spectral density of black-body
radiation. While the two formulae are not the same they - more or less
- generate the same (very similar) spectra for low color temperatures
(e.g. less than 4000 Kelvin). But, the generated spectra are different
the higher the temperatures become. The Wien approximation is
slightly simpler than Planck’s formula and has the advantage that the
logarithm of all Wien spectra can be modelled as a linear sum of
two basis vector in log-space [2]. This result is exploited in several
computer vision papers [10, 1, 6, 5, 4, 8, 9, 13, 14, 2]. More recently,
the Wien approximation was used as the basis for the development of
the theory of Locus Filters[2]. A colored filter is a ‘locus filter’ if and
only if for all lights on the Wien locus the filtered light also lies on the
locus.

Figure 1 shows (zoomed in) the Planckian locus in blue and
Wien locus (obtained using Wien’s approximation) in red in the uv

chromaticity diagram. Color temperatures vary from 20000K to the
left to 4000K to the rigth. One can observe that the two loci are
quite similar especially for low color temperatures. However, that
does not mean that a Planckian light and a Wien with the same color
temperature corresponds to the same point in the uv diagram. The
black and green crosses shown in Figure 1 are respectively the uv
chromaticity coordinates of Wien-approximation and actual 12000
Kelvin Planckian lights. Significantly, the distance between these two
light in u,v is 0.004 which corresponds to the just noticeable distance
[20, 21], the lights ‘look like’ they have different colors to an observer.
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Figure 1: A zoom in to the Planckian locus and Wien locus in the u,v
chromaticity diagram.

In Figure 2, we plot a 12000K Planckian spectrum and the Wien-
approximation for the same temperature. It is evident that these two
spectra are different from one another.

In a practical scenario, a black-body radiator - interpreted as a
light spectrum that might illuminate a scene - is actually parameterised
by 2 numbers. There is the color temperature T which controls the
shape of the spectrum (and which is the only free parameter in Planck’s
equation) and the intensity of the light which is accounted for by a
second scalar parameter k. This extra degree of freedom is a key
consideration when considering the similarity or otherwise of Wien-
approximate and actual Planckian lights i.e. we can scale any Wien
approximation to better approximate a Planckian light.

In this paper, we ask the following question: given a Planckian
light with temperature T, denoted EP(λ ,T ), what is the closest Wien
approximation, kEW (λ , f (T )), where f (T ) maps Planckian tempera-
ture to a corrected Wien temperature. We are interested in finding f ()
and scalars k such that EP(λ ,T )≈ kEW (λ , f (T )), for any T
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Figure 2: The spectral power distribution of a Planckian light with a
temperature of 12000K and a Wien approximated light with the same
temperature. Both spectra have normalised maximum power set to 1.

Broadly, we will present results that show that, recast in this way,
the Wien-approximation actually models Planckian lights rather well.
Further, we find a simple analytic formula for the correction function
f (). The practical implications of our work are discussed.

Background
A Planckian black-body illuminant EP is a function of color

temperature T and wavelength λ :

EP (λ ,T ) = c1λ
−5(e

c2
T λ −1)

−1
, (1)

where c1 and c2 are constants equal to 3.74183× 10−16Wm2 and
1.4388×10−2mK, respectively. Here, we will also allow an intensity
change which is mediated by the scalar k.

EP (λ ,T ) = kc1λ
−5(e

c2
T λ −1)

−1
, (2)

In the range of typical lights (2000K to 20000K), a simpler
approximate form of Planck’s equation - called Wien’s approximation
[19] - can be used to describe black-body illuminations since, across
the visible spectrum both functions generate similar spectra. These
Wien-Planckian lights are written as:

EW (λ ,T ) = kc1λ
−5e−

c2
T λ (3)

The constants c1 and c2 are as defined for Equation 1 and we,
again, allow the scalar k to model intensity change.

It is well known that for color temperatures less than 4000 Kelvin
the Wien approximation generates a spectrum with a very similar
shape to the actual Planckian Black-body radiator. Let us quantify
how similar Wien lights are to actual Planckians in terms of the shape
of spectra in the range of the visible spectrum. To do this we will
adopt discrete approximation of the lights. Each light spectrum will be
represented as a 81-component vector (corresponding to the spectral
power of the lights from 380 to 780 Nanometres at a 5 Nanometre
sampling).

Now given a Planckian and Wien-approximation vectors, denoted,
EP and EW , we can calculate the angle between the vectors (as a

measure of similarity that is independent of intensity). We define the
angular error in the usual way as:

AngularError(EP,EE) = acos(
EP.EW

|EP||EW |
) (4)

where ‘.’ denotes the vector dot-product, ||.|| is the vector magni-
tude and acos is the inverse cosine. The angular error, by construction,
is independent of the magnitude of the vectors and compares the shape
of the underlying spectra.

Figure 3 plots the relationship between angular errors between
Spectral Power Distributions (SPDs) of Planckians and Wien lights
for increasing color temperature. Here, we show the Planckian tem-
perature range (denoted T P in the Figure) of interest (up to 1,000,000
Kelvin or equivalently 106 Kelvin).

Figure 3: Angular error between Planckian and Wien lights’ SPDs with
the same color temperature (for temperatures in the interval [0,106]
Kelvin)

Arguably, the temperatures < 100,000K are, practically, of most
interest. We replot this range in Figure 4. We see that up to 4000
Kelvin the angular error is less than .2 degrees. Finally, returning to
the 12000 Kelvin Planckian and Wien spectra plotted in Figure 2, here
the angular error between the two spectra is 2.4 degrees.

Applications of the Wien-approximation
Simply stated, the Wien approximation is useful because of how

the formula simplifies when logarithms are applied. Taking the loga-
rithm of Equation 3, we see that

log(EW (λ ,T )) = log(k)+ log(c1λ
−5)− c2

T λ
(5)

Because only k and T are variables, Equation 5 teaches that
any Wien light is the sum of two scaled basic functions plus an off-
set term. Or, if we model the two components (log(k) and c2

T λ
) as

sampled 81-component vectors, we can say that a log Wien lies in
a 2-dimensional basis (with a constant offset vector). To be more
precise, as vectors, log-Wien lights lie on a 2-dimensional hyper-
plane. This two-dimensionality leads to the log RGB coordinates of
lights in the log-camera RGB images also to approximately lie on a
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Figure 4: Angular error between Planckian and Wien lights’ SPDs
of the same color temperature (for temperatures in the interval
[0,100,000] Kelvin)

2-dimensional hyper-plane. This in turn implies that the locus of light
in a log-chromaticity diagram lies on a line.

The linearity of the Wien log-locus is used in algorithms for color
constancy and illuminant invariance [10, 7, 1, 6]. Additionally, many
shadow detection approaches have used Wien’s approximation - as a
key step - to model the light in the scene [4, 8, 9, 13, 14].

More recently, the Wien approximation has proven to be useful
in Locus Filter Theory [2]. Assuming lights can be described using
Wien’s formula there are a unique class of filters (the Locus filters)
that have the useful property that all Wien lights are mapped to other
lights that are also described by the Wien formula [2]. Moreover, it
was shown that the locus filters, over all other possible types of filters,
were shown to uniquely have this light-to-light mapping property.

As derived, Locus Filter theory only applies to Wien approxi-
mations to Planckian lights. However, this paper, effectively, derives
a nomogram that maps Wien temperature to u′,v′ -near-equivalent
Planck temperature. Using our nomogram we will be able to locate the
Wien near-equivalent temperature TW for any Planck temperature T p

such that we have a very close spectral match to the desired Planckian.
In this way Locus Filter theory can be considered - by the application
of the nomogram - to apply to Planckian Lights as well as their Wien
approximations, an important extension to the theory.

In [3], a modified (filter corrected) Wien Planck’s Equation was
shown to generate lights that were very similar to those generated by
the standard Daylight equation [15].

Modelling Planckians using Wien’s formula
From Figures 3 and 4, we see that Wien lights are different

from Planckians - in terms of angular error - and this is especially
true as color temperature increases. Here we wish to find a cor-
rection function f () such that for a Planckian with color tempera-
ture T, EP(λ ,T ), the Wien approximation for the corrected light,
EW (λ , f (T )) is closer than when T is used directly in Wien’s formula.
We’d like |EP(λ ,T )− k1EW (λ , f (T ))| < |EP(λ ,T )− k2EW (λ ,T )|
(where k1 and k2 are scalars that optimally adjust the magnitudes of
the spectra). Our goal then is to find the function f () such that (for all
temperatures of interest):

EP (λ ,T )≈ kEW (λ , f (T )) , (6)

As before, let us represent spectra as vectors in the discrete
domain: a Planckian light vector is denoted EP and its color tem-
perature is denoted T P. Similarly, a Wien approximated light is
represented by the vector EW and its color temperature is recorded
as TW . Suppose now that we have a set of Planckian color tem-
peratures T P = [T P

1 ,T P
2 , ...,T P

N ] that correspond to Planckian lights
ΨP = [EP

1 ,E
P
2 , ...,E

P
N ].

By searching, for the ith Planckian Light we find the Wien tem-
perature, TW

i that minimizes:

min
TW

i

AngularError(EP
i ,E

W
i ) (7)

where TW
i are, say, integers in the interval [1667,1000000] Kelvin

(the range explored in this paper). In this way we find a set of corrected
Wien color temperatures T W = [TW

1 ,TW
2 , ...,TW

N ]. The correspond-
ing spectra are recorded in the set ΨW = [EW

1 ,EW
2 , ...,EW

N ]. In other
words, we solve for the Wien color temperature that gives the closest
normalized spectral radiation to each Planckian in terms of angular
error between the two spectra.

Practically, the look-up-table-type optimisation we have just set
forth will suffice to convert Planckian temperatures to Wien equiva-
lents. But, for elegance we would like find a simple analytic correction
function such that

TW
i ≈ f (T P

i ) (8)

While T P
i and TW

i correspond to temperatures in a specific exper-
iment we, in general, seek f () such that

TW,c = f (T P) (9)

That is the correction function f () returns the corrected - the
superscript c ‘means’ correction - temperature TW,c (to drive Wien’s
formula).

Finding the Correction Function
It is known that the difference in color temperature does not

reflect the visual difference between the colors of two lights. For
this reason, we choose to represent color temperatures in Mired units.
The Mired color temperature [12] (micro-reciprocal-degree), is often
used to measure how similar one light color is to another, and can be
calculated from a color temperature T as follows:

M =
106

T
= Mired(T ) (10)

Let us define two vectors T P,M and T W,M that contain the paired
Mired color temperatures our Planckian and corrected Wien lights
respectively (where as before P and W denote dependence on Planck’s
and Wien’s formula and the superscript M indicates we are expressing
temperatures in Mired units). Using the subscript i to denote the ith
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colour temperature under consideration we seek an F() (a correction
function in Mired units) such that:

T W,M
i ≈ F(T P,M

i ) (11)

Let us adopt the notation Po() to denote the polynomial of expan-
sion degree o (of the function argument). When o = 1 P1(T P,M

i ) =

[T P,M
i 1] and when o = 3, P3(T P,M

i ) = [T P,M
i (T P,M

i )2 (T P,M
i )3 1]

(notice we always include an offset term). According to our notation
an order o expansion is a 1× (o+ 1) vector. Now, we solve for the
optimal polynomial by finding the (o+1)×1-component coefficient
vector co by minimizing:

min
co ∑

i
||T W,M

i −Po(T P,M
i )co||2 (12)

The vector co can be found analytically by computing the Moore-
Penrose inverse[11].

Generating spectra using a correction function
In the range of interest, in this paper, 1667 to 1,000,000 Kelvin ( 1

to 600 mired units), we can use Equation 7 to find the best temperature
conversion. The correction function here is a ‘look up table’ as there
is no calculation. Rather for every integer degree of Kelvin we simply
look up the optimal corrected temperature TW,c.

TW,c = lookup(T P) (13)

For a given temperature T (in Kelvin) the correction using our
analytic function involved converting to and from Mired units:

TW,c = f (T P) = (Mired−1(F(Mired(T P))) (14)

where Mired() converts to Mired units (see Equation 10) and F(x)
= P5(x)c (we use a fifth order polynomial expansion and linearly
combine the terms according to the coefficient vector solved for in
Equation 12).

Whether we compute TW,c using Equations 13 or 14 we generated
the desired approximation to a Planckian light with temperature T P

by inserting TW,c (for T in Equation 3).

Experiments
In order to find the function that models the relationship between

Planckian color temperatures and and the Wien corrected counterparts,
we use the set of Mired color temperatures ranging from 1 to 600
Mired with 1 Mired step [17], corresponding to color temperatures
from to 1667 to 1000000 Kelvin with non-uniform steps. In Figure
5, we plot Mired Planckian temperatures against their Mired Wien
correction temperature (or to use the notation of the last section we
plot T P,M and T W,M). For large colour temperatures (small Mired
units) we also zoom in (see inset). It is evident that the relationship
between the Mired temperatures are linear for large Mired units (small
colour temperatures) but the graph curves for the small Mired value
region (again, see inset).

Let us now consider how well a correction function f () can map
a Planckian colour temperature T P to the corrected Wien temperature
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Figure 5: Planck color temperature is plotted against the Wien temper-
ature that generates the closest approximation spectrum (when Wien’s
formula is used). Inset shows relationship is non linear for small Mired
units (large color temperatures).

TW,c. To assess how well a correction function works we generate the
actual Planckian Light spectrum, for temperature T P, and its Wien ap-
proximation for temperature TW,c = f (T P). This calculation is carried
out in the discrete domain so both spectra are represented as 81-vectors
(a sampling from 380 to 780 Nanometers at steps of 5 nm). Then, to
determine the closeness of the spectrum-pair we used Equation 4 to
calculate the angular error. For our correction function we can use
a look-up-table (see Equation 13) or different orders of Polynomial
regression. Or, even we could just us the Planckian temperature T P to
drive Wien’s equation (i.e. we apply no correction).

We found that the maximum error - the angle between the Planck-
ian and Wien temeperature corrected spectra - was respectively 6.68,
2.77, 1.53 and 0.69 degrees when respectively no correction is carried
out and when a 2nd, 3rd, 4th and 5th degree polynomial was used.
When a lookup table is used directly, the maximum error is also 0.69.
So, to 3 decimal places a 5th order polynomial has the same max error
as the lookup table. Finally, we remark that, although it was not used
as a constraint, the 5th order polynomial we found is a strictly mono-
tonically increasing function (in the interval of Mired temperatures
that we examined).

Figure 6, in red, plots the correction from the Planckian Temper-
ature, T P,W to the corrected temperature TW,c (both in Mired units
here). The analytic fit using the fifth order polynomial is shown in
dashed green. The curves overlay each other here indicating that the
analytic function works similarly to the look-up-table. Indeed, the
average Mired color temperature error calculated across [1,600] Mired
domain is 0.15 (the Just Noticeable Distance is 5.5 Mired [12, 18]).

In Figure 7, we replot Temperature in Kelvin. Here the x-axis
is the actual desired Planckian temperature. And, the y-axis is the
temperature which drives Wien’s equation such that the resulting
spectrum is close (in terms of angular error) to the the Planckian light.
Here the line in red shows the temperature conversion using the look-
up-table. Notice how non-linear this curve is (compared to the linear
relation in Mired units, Figure 5). In green, we show the conversion
using Equation 14. The average distance between these two curves is
just 15 degrees (Kelvin) which is, visually, never noticeable.

Let us now consider how close a Planckian spectrum, with tem-
perature T P is compared to a spectrum created using Wien’s function

4

30th Color and Imaging Conference Final Program and Proceedings 197



Figure 6: The relationship between Planckian Mired colour temper-
ature and the corrected Wien temperature. Red line is a plot of the
look-up-table mapping. Dashed-green plots the fit using a 5th order
polynomial.

Figure 7: The relationship between Planckian colour temperature
(in Kelvin) and the corrected Wien temperature. Red line is a plot
of the look-up-table mapping. Green plots the fit using a 5th order
polynomial

and the corrected temperature TW,c = f (T P). These spectra are, as
before, represented as discrete sampled vectors (at 81 uniformly dis-
tributed points from 380 to 780 Nanometres) and Equation 4 is used
to calculate their angular error. The blue line in Figure 8 records the
angular error for the look-up-table solution. The error associated with
the analytic correction function (see Equation 14) is shown with a
dashed red line. For reference if we do not use a correction function
(and use T P) as the argument to Wien’s function then we generate the
green error curve. It is evident that carrying out no correction results
in an angular error of, in the worst case, more than 6 degrees for very
high temperature Planckian lights. In contrast, the look-up-table and
correction function f () always deliver lights that are less than 1 degree
from the desired Planckian spectrum.

To illustrate what these angular error numbers mean, let us return
to our example in Figure 2. In Figure 9, we show in red the 12000K
Planckian spectrum. Blue is the spectrum of light generated by Wien’s
formula using TW,c = 10912 Kelvin. The dashed blue light is for

Figure 8: For Planckian color temperatures up to 1,000,000 Kelvin we
plot the angular error for the best corresponding Wien approximation
where a look-up-table (blue line) and analytic temperature conversion
(dashed red) line is used.In green we plot the error when the Planckian
colour temperature is used in Wien’s equation.

the 12000K Wien formula. It is evident that by correcting the color
temperature that drives Wien’s function that we arrive at a much more
similar spectrum. Indeed, the angular error reduces from 2.4 to 0.58
degrees.

Figure 9: A 12000K Planckian is plotted as a solid red line. The
dashed blue line is a 12000K Wien light and the solid blue is 10912K
Wien light. Evidently the latter Wien light is closer to the Planckian
All spectra are normalised to have maximum power equal to one

For Planckian lights in the interval 1667 to 1,000,000K, we report
in Table 1 the mean, median, max and 95th% percentile of the angu-
lar errors between the actual and Wien approximate spectrum (using
the corrected temperature). Three ‘corrections’ are tested. First in
the column ‘uncorrected’ we do not correct the temperatures. Rather
the Planckian color temperature is used to directly drive the Wien
approximation. Then, we correct the Planckian temperature using our
look-up-table, Equation 13. Our look up table function is approxi-
mated by an analytic function f (), see Equation 14, and the results are
reported in the last column.

Additionally, we evaluated our corrected version in terms of the
distance in u’,v’ chromaticity space, ∆u′v′, between the Planckian
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lights set and the three sets of Wien lights (uncorrected, look-up-table
and analytic function). Here the efficacy of our fit is even more evident.
The mean ∆u′v′ is 0 (to 3 decimal places). However, uncorrected
temperatures leads to a max ∆u′v′ of 0.016 (significantly above the
0.004 threshold taken to be a jnd in u’v’ space [20, 21]). However,
the look-up-table and analytic conversion function leads to maximum
errors of 0.001 and 0.002 respectively.

Uncorrected LUT-corrected f ()-corrected
Mean 0.848 0.180 0.187
Median 0.065 0.030 0.047
Max 6.718 0.691 0.691
95th% 4.734 0.682 0.684

Table 1: The mean, median, max and 95th percentile of the angular
error between Planckian lights and their equivalent Wien lights when
the colour temperature is uncorrected, Look-up-table corrected and
corrected with the analytic function f ().

Uncorrected LUT-corrected f ()-corrected
Mean 0.002 0.000 0.000
Median 0.000 0.000 0.000
Max 0.016 0.001 0.002
95th% 0.010 0.001 0.001

Table 2: The mean, median, max and 95th of ∆u′v′ between Planckian
lights’ chromaticity coordinates and those of their equivalent Wien
lights when the colour temperature is uncorrected, Look-up-table
corrected and corrected with the analytic function f ().

Conclusion
Planck’s famous equation defining a black-body radiator is toler-

ably well approximated by a simpler formula called Wien’s approx-
imation. However, especially for higher colour temperatures (say T
> 4000 Kelvin) the approximation is not as good with the delta be-
tween the actual Planckian and the Wien approximation becoming
visually quite noticeable for temperatures larger than 10000K. In this
paper, we have shown that we can map a Planckian temperature T P a
new converted temperature TW,c = f (T P) such that the spectra gen-
erated by Wien’s approximation becomes much closer to the desired
Planckian.

Our correction function can be implemented as a look-up-table or
as a polynomial function (operating in Mired units and then converted
back to temperature in Kelvin). After application of our correction
function, the generated spectra are very similar to the desired Planckian
spectra. Over the range of lights with typical temperatures (1 to
600 Mired units or 1667 to 1,000,000 Kelvin) our corrected spectra
plotted on the same graph as Planckian are almost coincident and the
worst case Delta u’v’ Euclidean chromaticity distance (between actual
Planckian and corrected Wien) is much less than 1 JND.
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