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Abstract

Smart image editing is drawing attention and a wide range of
edit operations have been investigated. We address the problem
of creating new image versions where light conditions and ob-
Jject colors can be altered while maintaining physical coherence
across the scene. We propose a baseline framework comprised of
a surreal dataset with a large Ground-Truth on light effects and
a set of basic deep architectures relying on intrinsic decompo-
sition. Our proposal is evaluated for image relighting and out-
performs the state-of-the-art on the previous VIDIT dataset. The
codes and datasets are available: https://github.com/
liulisixin/ImageEditingSI

Introduction
Deep architectures provide a versatile tool for (a) estimating in-
trinsic scene properties from a single image, and (b) generating
new versions of an input image to a given target. The image gen-
eration approach has rapidly evolved in recent years in the pursuit
of smart image editing, from the early color transfer by Reinhard
et al. [24] based on color space transformation, to the impressive
generation of photo-realistic versions of images directly from text
captions [7] in the last months. However, the generation of realis-
tic image versions under new light conditions or with new object
colors is still an ongoing challenge. Up to this point, image re-
lighting, intrinsic decomposition, and material editing have a sub-
stantial body of work behind them. In this work, we aim to create
a baseline framework for evaluating these types of edit operations.
Figure |I| illustrates our scheme for light and color editing based
on the intrinsic estimation of reflectance, shading, and input light.
Thus, the aim of the paper is twofold. Firstly, we propose a
new dataset of synthetic images with a large variety of light con-
ditions to train different deep models. The dataset is surreal since
the aim is to learn the light reflection properties, no matter which
is the scene semantic content, we introduce a high degree of tex-
ture variability and a single light condition to ensure strong cast
shadows. Secondly, we propose three basic architectures, from a
single encoder-decoder that directly generates the target version
and two additional models that estimate the intrinsic light compo-
nents that will provide the scheme with robust editing abilities.
We intend to prove that intrinsic decomposition clearly im-
proves the relighting performance and enlarges the possibility to
introduce multiple and consistent editing operations on the gener-
ated versions, as shown in Figure[[] We will establish a baseline
evaluation based on the proposed dataset and a family of basic
architectures that outperform the state-of-the-art methods on the
VIDIT dataset [[12}[13]] that was designed for a similar purpose.

Previous works

Al-based Image Editing. Creating new versions of a given im-
age with different tasks in mind has been a goal in computer vi-
sion research. Considering the whole range of possible editing
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Figure 1. Image editing and relighting pipeline based on intrinsic decom-
position. Except for the input image, the other images are all our predictions.

operations, we identify two different families of works. On one
side, we have Semantic image editing, that pursues to manipulate
the image content. It has evolved from the initial works focus-
ing on altering facial appearance [27] to more recent and refined
versions that allow to manipulate any image part based from its
semantic segmentation [20]. On the other side, we have Image
style transfer, that from the seminal work of Gatys et al. [10]
pursues to create artistic imagery combining image content and
specific style [15]. In between these two extremes, we can find a
family of works that pursue to manipulate the image content, ei-
ther by inserting or removing specific objects [37] or by altering
their color [31] while keeping the consistency of the physically
realistic light effects, such as shading or cast shadows. We review
some of these works in the next section.

Image Relighting. Editing light scene conditions has been
mainly explored in two different scenarios: (a) portrait relighting
[22] is the most popular, given an input image, a relit version is
obtained in the output, and the target light condition is introduced
in the bottleneck of an encoder-decoder network [30, |39} 21]],
some introduce GAN architectures [11] or intrinsic decomposi-
tion [36] steps to improve the final appearance, and (b) outdoor
scene relighting, that has been tackled by Lalonde et al. [19] from
a single image based on estimating the position of the light, and
by Duchene et al. [6]], which in this case is based on a multi-
view dataset. With the aim of setting a baseline for this topic, an
image relighting challenge [13] was held on the VIDIT dataset
(Virtual Image Dataset for Illumination Transfer) [12]] formed by
synthetic images with very high complexity, including densely
packed scenes, with large dark areas and transparent surfaces. The
challenge focus on three different approaches to the relighting
problem: one-to-one relighting, estimation of illumination set-

2022 Society for Imaging Science and Technology

Society for Imaging Science and Technology


https://github.com/liulisixin/ImageEditingSI
https://github.com/liulisixin/ImageEditingSI

tings, and any-to-any relighting. The best results were obtained
by [23] and [32]]. The first work [23] proposes a wavelet decom-
posed RelightNet called WDRN which is an encoder-decoder net-
work under a multi-resolution framework. In the second [32], the
author carries out a single image relighting through a novel Deep
Relighting Network (DRN) with three parts: scene reconversion,
shadow prior estimation, and re-renderer.

Intrinsic decomposition. Since the seminal work of Barrow and
Tenenbaum [2], a lot of methods have explored the problem of es-
timating intrinsic components[1]]. Reflectance and shading have
been the main components, whose pixel-wise product recovers
the original image. Lately, light position and color have been es-
timated too [29]. Initial unsupervised approaches has been sub-
stituted by deep architectures that extend the U-Net paradigm to
a one-to-two encoder-decoder version[28} 3, 134] or multi-stage
trained architectures [8]]. One of the main problems to deal with
intrinsic decomposition has been the lack of adequate Ground-
truth datasets. The small size of the datasets or the lack of physical
coherence in the light conditions due to the use of environmental
maps has been discussed in different works [4}[17}128] and diverse
synthetic datasets have been proposed.

Relighting Surreal Dataset

We built a surreal synthetic dataset through the open source
Blender rendering engine[5], which follows the methodology pro-
posed in the research of intrinsic decomposition in Sial et al. [28]].
Since our dataset contains both intrinsic decomposition and re-
lighting, we call it ReLighting Surreal Intrinsic Dataset (RLSID).
Some examples are displayed in Figure 2]

RLSID has 10,077 scenes, and each scene has about 10 dif-
ferent light conditions, resulting in 100,242 images with intrinsic
data for the whole image. The synthetic scenes are formed by
3D objects surrounded by walls. The 3D objects are randomly
selected from various categories of the ShapeNet dataset [26] in-
cluding electronics, pots, buses, cars, chairs, sofas, and airplanes.
The roughness parameter is used to control how much light is
reflected from the object’s surface. Walls are set either to homo-
geneous colors or a rich set of textured patterns are randomly se-
lected. As a result, the dataset presents significant reflectance and
shading variations across the different objects and background
surfaces. Each of the scenes is illuminated by a single small area
color light source. Light properties include color and position.
Light color is represented by one single parameter, which is color
temperature. For a single scene, each image is generated using a
random pan and tilt light positions represented on an upper semi-
sphere of a radius size from 20 to 50 meters. To create a more
natural environment, objects are always placed on the floor and
around the center of the scene. The distance of the walls from
the center of the scene is between 70 and 100 meters. The meter
unit is only chosen in the Blender setting to capture high-quality
images with less noise. The meter unit should not be considered
as the real-world meter unit, only the scale matters.

Methods

In this section, we explain the different architectures we want to
evaluate on a single image relighting problem, after being trained
on our RLSID dataset. We move from the simplest U-net (1 En-
coder to 1 Decoder) architecture to different versions that increase
the number of Decoders while constraining the training to the es-
timation of new intrinsic components. In Figure. [3] we plot a
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schema of our 3 proposed methods, which we refer to as 1-to-1
U-NET, 1-to-2 Intrinsic, and 1-to-3 Intrinsic.

Intrinsic decomposition constraints

Intrinsic decomposition as proposed by Barrow and Tenenbaum
[2] assumes that an image can be decomposed into the pixel-wise
product of two components, reflectance, and shading:

I(x,y) = Ref(x,y) - Sha(x,y) )

where / is the original image, Ref is the reflectance component,
Sha is the shading component, and (x,y) are pixel coordinates.
This model assumes that the reflectance component is indepen-
dent of the light position, which only affects the shading com-
ponent. We use these assumptions as a physical constraint that
forces the reflectance to be the same both for the input and target
images, while shading varies accordingly with the input and tar-
get light position. This intrinsic decomposition is not going to be
used in the 1-to-1 U-Net network.

Proposed network architectures

Basic 1-to-1 U-NET Architecture. Considering the relationship
between the input and relit images, the relighting task can be seen
as an image-to-image translation problem. We propose a basic ar-
chitecture that resembles the structure of the U-net network [25]]
described in Pix2pix [[14], which is an encoder-decoder structure
with skip connections, as shown in the left top of Figure. 3] We
modify it to introduce in the U-Net bottleneck the target light con-
dition as an input.

The encoder is formed by a series of Convolution-
BatchNorm-ReLU blocks. The output of this encoder is a latent
space that further passes through one more convolution layer and
a dense layer, yielding the light condition of the original image.
After the original light condition is yielded, a new light condition
is introduced to replace it. It is processed to create a new latent
space, again formed by a dense layer and a transposed convolution
layer, and reshaped to the same size as the output of the encoder.
The actions of the decoder are like an invert of the encoder, and it
takes the encoded message and the new light condition to predict
a relit image.

The total loss function is defined as the sum of 3 losses as:

Litor =012, (Le,Le) + 0.1, (L, L)

n 2
+ @3 ZLRns (RnS, RnS)

where I:p and L, are den9ting predictions for light position and
color respectively, and RnS is the prediction of the relit image,
thus Zg,s is the relit image loss. The different losses are com-
bined with @; weights.

1-to-2 Intrinsic Architecture. In this second architecture, we in-
troduce the intrinsic decomposition to additionally constrain the
correct decomposition of reflectance and target shading with their
GT versions. In this case, the relighting network is given in the
scheme shown on the left bottom of Figure. [3] The new architec-
ture presents the same encoder, but two decoders. One of them
is used to predict the reflectance component, and the second one
is used to yield the shading component under the target light con-
dition. At the bottleneck, the output of the encoder is a latent
representation that is transferred into the decoder to estimate the
reflectance component. On the other side, the new light condition
after being processed is regarded as the input of the decoder for
the new shading. After the reflectance component and the new
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shading component are predicted, the relit image is yielded by the
product given in Equ[T]
As a result, the loss function is derived as:

L2 =121, (Le,Le) + 0221, (Lp, L)
+ 03 LRas (RS, RnS) + 04.%g (R, R) ©)
+ 05.%,s5(nS, nAS)

where R is the reflectance prediction. And 7S is the new shading
prediction, which is the shading under the target light.
1-to-3 Intrinsic Architecture. Furthermore, an architecture with
three decoders has also been implemented as shown on the right
side of Figure. [3] Compared with the previous schemes, it intro-
duces one more decoder to also predict the shading of the original
image. Likewise, the reflectance decoder, this new decoder only
receives the encoded information from the encoder and has no
connection with the new light. In other words, a full model for
intrinsic decomposition is enclosed in this new architecture. With
the output of the shading of the original light, the reconstruction
of the input image can be generated by the product of reflectance
and the original shading.

The estimation of the original shading requires the addition
of two more losses, which results in:
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where $ is the prediction of the original shading, and ES is the
prediction of the input image from the estimated original shading.

Implementation details and evaluation metrics
To train on the RLSID dataset, we randomly divided the dataset
into three sets: 80% for the training set, 5% for the validation set,
and 15% for the test set. The training set has about 80,000 im-
ages with intrinsic data and we train all three proposed networks
with identical settings and hyperparameters. For the optimization,
we use Adam optimizer [16] with a learning rate of 0.0002 and a
batch size of 96. The inputs and outputs including images and
light conditions are all normalized to [0, 1]. To constrain the im-
ages in Equ]2} Equ[3]and Equd] we use a sum of L1 loss, SSIM
loss [331[33]] and LPIPS loss [38]]. The light position is constrained
by the angular error, and the light color is constrained by L1 loss.
Afterward, we fine-tune three proposed models on the
VIDIT dataset [12] and some real images. For all these exper-
iments, the resolution of input and relit images is 256 x 256.
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Table 1: Estimation errors for relit images and light conditions on RLSID dataset

Methods Relit images Estimation of light condition
MPSt | SSIMt | LPIPS] | PSNRt | MSE| | Light position Light color
1-to-1 U-Net | 0.9114 | 0.9106 | 0.0878 25.91 0.0038 12.95 2.1710
1-to-2 Intrinsic | 0.9168 | 0.9154 | 0.0818 26.50 | 0.0033 12.87 1.1645
1-to-3 Intrinsic | 0.9180 | 0.9167 | 0.0807 26.68 | 0.0033 12.72 1.1171
Table 2: Estimation errors of the intrinsic components on RLSID dataset
Components Methods MPSt | SSIMt | LPIPS| | PSNRt | MSE|
Reflectance 1-to-2 Intr?ns?c 0.9537 | 0.9552 | 0.0479 | 28.8062 | 0.0018
1-to-3 Intrinsic | 0.9545 | 0.9559 | 0.0468 | 29.1480 | 0.0016
New shading 1-to-2 Intr?ns?c 0.8878 | 0.8944 | 0.1188 | 22.5385 | 0.0081
1-to-3 Intrinsic | 0.8891 | 0.8955 | 0.1173 | 22.7268 | 0.0079
Original shading | 1-to-3 Intrinsic | 0.9767 | 0.9797 | 0.0262 | 31.5787 | 0.0011
Tallz):(epg;ig]l;anr;’gtatlve rﬁﬁ;’g? on gISDIII\-I/-I?ataLSIg?PS T TPSNRT the metrics. And 1-to-2 intrinsic network presents clear advan-
tages over the 1-to-1 U-Net. As a result, these make us conclude
gE?inﬂB[ZS] 8232? ggg;g 82328 1;&3 again that the intrinsic decomposition is helping in the relighting
Lyl 123] 0' 6436 0' 6301 O. 3430 | 1 6. 68 task. Table [2] shows the quantitative results of the intrinsic de-
YorkU[13] 0.621 6 016091 0.3659 16.81 composition of 1-to-2 and 1-to-3 networks. It can be seen that
IPCV_IITM[13] 0.5897 0.5298 0'3505 17'05 predicting and constraining the original shading provides 1-to-3
Deephelight[32] 0'5892 0.5928 0'4144 17'42 network with a clear advantage that makes it clearly overcomes
’ ’ ’ ’ the results of 1-to-2 in the estimation of reflectance and the target
Hertz[13] 0.5339 | 0.5666 | 0.4989 | 16.92 shading.
Image Lab{T3] 0.3746 | 0.3769 | 0.6278 | 16.89 We observe that the error between the input and relit images
S,l LT“, g n/a 0.6060 | n/a 17.00 varies with the position of the target light. In Figure ] we show
Pix2pix [14] 0.5928 | 0.5825 | 0.3970 | 17.35 the PSNR values depending on the range of angles between the
1-to-1 U'Net. 0.7192 | 0.6815 | 0.2431 | 17.88 input and the target light position. In addition to the PSNR of
1-t0-2 Intr!ns!c 0.7298 | 0.6948 | 0.2353 | 17.38 our prediction, we also plot the difference between the input and
1-to-3 Intrinsic 0.7306 | 0.6915 | 0.2303 | 17.72 relit images (GT) as a reference value (in blue). We can observe

When fine-tuning on other datasets and images, we have no
ground truth of intrinsic components. In order to utilize the physi-
cal constraint, we introduce a reflectance consistency loss instead.
After getting the relit image, we feed the relit image to the net-
work again, thereby obtaining the reflectance of the relit image.
The reflectance consistency constrains the reflectance of the input
image and relit image to be the same.

The metrics used to evaluate our predictions include mean
square error (MSE), Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM) [33}135]], Learned Perceptual Image
Patch Similarity (LPIPS) [38], and Mean Perceptual Score (MPS)
[13]. Mean Perceptual Score (MPS) is the average of SSIM and
LPIPS scores, and it is used in the ranking score of the AIM 2020
relighting challenge [13]. We use the angular error both for the
position (derived from pan and tilt) and for the color (derived from
the 3D color vector) of the light.

Results and Discussion

In this section, we first show the results obtained on our RLSID
dataset, both a qualitative and a quantitative evaluation. Second,
we present the results of our trained networks after fine-tuning
on the VIDIT dataset and we compare our results with previous
works. Finally, we test our networks on some real images to ob-
serve their generalization capabilities.

Results on RLSID Dataset

Quantitative Evaluation. We perform a quantitative evaluation
of our network on a testing dataset with more than 1500 scenes.
The results on the relit images and the estimations of light con-
ditions are displayed in Table[T] From these results, we can con-
clude that 1-to-3 intrinsic network achieve the best results with all
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that the error is highest when the relative angles of the light po-
sitions are in the range of 80~100 degrees, which means that at
such degrees the relighting is harder. The figure illustrates that al-
though PSNR of our model drops slightly at these angle intervals,
it remains over 25 for all the models. Additionally, in most cases,
the 1-to-3 is superior to the 1-to-2 intrinsic network, and 1-to-2 is
superior to the 1-to-1 U-Net.

Input 1-to-1 U-Net 1-to-2 Intrinsic 1-to-3 Intrinsic

il

PSNR
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Figure 4. Error variation depending on the angle between input and target
light.
Qualitative Evaluation.

Figure [T] show some qualitative result on manipulating both
light and color. In Figure [5] we show more qualitative results of
relighting on the testing dataset. The angular distance between
the source and target light positions is obvious in these cases. The
first row shows that our models can generate a clear shadow that
casts at the front of the object. In the second row, we demon-
strate that our models can remove the cast shadow and shading
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Figure 5. Qualitative results of relit images on the RLSID dataset.

Input Relit(GT)
Figure 6. Results of editing color and light on real images.

on the facade of the object, and then relight it properly. The third
row illustrates that the networks can move the cast shadow from
left to right. In general, the image quality obtained by the 1-to-
3 Intrinsic network is better than the other two. For example, in
the first example, the upper mug interior is properly illuminated,
whereas the other two are not. Another advantage of 1-to-2 In-
trinsic and 1-to-3 Intrinsic over 1-to-1 U-Net is they present less
noise. In general, we can say that intrinsic decomposition quali-
tatively helps the image relighting process.

Results on VIDIT Dataset

Table 3] shows the quantitative comparison with other methods on
VIDIT Dataset. The top rows are the results from the original
challenge on VIDIT [13]|. The subsequent rows in Table[3]are the
results from [18]. Since VIDIT dataset did not release the ground
truth for the test, [18] and [9] split the released part with a rate
of 80:10:10 for the train:validation:test, respectively. However,
[18]] did not share the result of the split, so we did our own split
with the same rate. As a result, the splits in Table [3] are not all
the same. Based on our split, we train from scratch and evaluate
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the model modified from [14] as a baseline, which only adds a
module to embed the light conditions. The results are shown in
the bottom rows of Table [3] where we apply our three models
that are pre-trained on our RLSID dataset and fine-tune them on
the VIDIT dataset. The 1-to-3 intrinsic network achieves the best
results on MPS and LPIPS. In particular, MPS is the final metric
used in the challenge. 1-to-2 intrinsic network and 1-to-1 U-Net
achieve the best results with SSIM and PSNR respectively. These
results confirm the abilities of our network and our RLSID dataset
in generalizing for other scenarios.

Results on Real images

To test on real images, we fine-tune our 1-to-3 Intrinsic network
(only trained by the RLSID dataset) on some real scenes (40 im-
ages) we captured in lab conditions. In Figure 6] we show the re-
sults of editing on a different testing image. The image in the third
column shows that our model can change the color of any object
and add some text by editing the predicted reflectance compo-
nent. In the fourth column, we present a relit version of the input
image which is built with the predicted target shading and the es-
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timated reflectance. Finally, the image in the fifth column depicts
the combined editing results.

Conclusion

In this paper we have explored the problem of editing the light
and color of an image while keeping the physical coherence of
the light across the scene.

We build a large dataset of surreal scenes with consistent
light conditions, a comprehensible number of objects, and a suffi-
cient level of diversity to approach the problem step by step. The
dataset will be used to train some deep architectures to establish a
baseline framework, but it can easily be enlarged with more com-
plex light conditions in further research.

We evaluate the performance of three deep architectures
from a basic encoder-decoder, to some extensions that intro-
duce physical constraints derived from the intrinsic decomposi-
tion model, and which are used to facilitate the image editing task.
Limitations and Future work: The scenes we study in this work
are limited in the following ways: (a) the number and shape of
the objects, as well as the shape of the background; (b) the object
surfaces only present diffuse reflection; (c) the light source only
considers a single small area light source. In future research, we
plan to overcome all these limitations.
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