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Abstract
An object’s color is affected by the color of the light inci-

dent upon it, and the illuminant-dependent nature of color cre-
ates problems for convolutional neural networks performing tasks
such as image classification and object recognition. Such net-
works would benefit from illuminant-invariant representation of
the image colors. The Laplacian of the logarithm of the image is
introduced as an effective color invariant. Applying the Laplacian
in log space makes the input colors approximately illumination-
invariant. The illumination invariance derives from the fact that
finite-difference differentiation in log space is equivalent to ra-
tios of neighboring pixels in the original space. For narrow-band
sensors, rationing neighboring pixels cancels out their shared il-
lumination component. The resulting color representation is no
longer absolute, but rather is a relative color representation. Test-
ing shows that when using the Laplacian of the logarithm as input
to a Convolutional Neural Network designed for classification its
performance is: (i) approximately equal to that of the same net-
work trained on sRGB data under white light, and (ii) largely
unaffected by changes in the illumination.

Introduction
Color is important for image classification, object recogni-

tion. However, color is not a particularly stable feature since it
varies both as a function of the scene lighting, a given camera’s
spectral sensitivity functions, calibration parameters and white-
balance adjustment. Naturally, any variability in the sRGB color
creates problems for such tasks.

Figure 1: An example of how a combination of variations in the il-
lumination and automatic white balance differences creates color
variations in the image colors. This composite image is created by
stitching together three images taken simultaneously by a system
using three identical cameras each using the same color-balancing
algorithm on their slightly different views of the scene. Note that
despite the fact that its the same color-balancing algorithm, the
color balance varies between the three views because the differ-
ences in image content lead to the algorithm determining a differ-
ent white point for each image.

In the context of machine learning approaches to object
recognition and image classification, the two main approaches to
the variability of image colors are: (i) to apply a ‘color constancy’
algorithm to correct the colors; or (ii) to augment the training data
with synthetic color-shifted examples [1]. Data augmentation is
often effective but depends on the method used to produce the

augmented data, which as in AlexNet [1], is not based on a physi-
cal model of how light and surfaces interact and does not account
for the color variations arising in practice.

In machine learning approaches, it is taken for granted that
the input provided to a Convolutional Neural Network (CNN) is
a standard sRGB [2] image. We propose, instead, to follow the
lead of the human visual system, which is known to roughly obey
the well-known Weber-Fechner law of logarithmic response. This
approximation does not hold at low luminance levels [3], but is
sufficient for our purposes. Furthermore, early in the visual path-
way there are center-surround cells that can be interpreted [4] as
computing a difference-of-Gaussians approximation of the Lapla-
cian. Taking the logarithm of the sRGB input neither adds nor
removes information and has the advantage that derivatives in the
log sRGB space are approximately invariant to the color of the il-
lumination. Hence the Laplacian of the Logarithm (LL) provides
a perfect illuminant-invariant input space for object recognition
and image classification. A derivation of the (approximate) illu-
mination invariance is given below.

Related Work
Convolutional neural networks are now a key component of

vision systems such as ResNet [7] for classification, RCNN se-
ries [8] for object detection, and FCN series [9] for semantic seg-
mentation. These CNN-based models take an image as their only
input. From AlexNet [1] to VGG-Net [10] to ResNet [7], there
have been successive improvements in performance. Despite this,
most CNNs rely on relatively stable colors and are somewhat sen-
sitive to how differences in the scene illumination affect the image
colors. In response, CNNs are usually trained using data augmen-
tation in which variations in the input training data are simulated,
including rotation, cropping and flipping. As well, the colors are
usually ‘jittered,’ which usually means that a given RGB is trans-
lated by a random amount, ∆R,∆G,∆B, although sometimes this
is done in an alternative color space such as HSV. In any case,
such jittering does not model the underlying physical interaction
of lights and surfaces.

An alternative to data augmentation is to use ‘color con-
stancy’ to adjust the image sRGB [2] to be as it might be under
some standard ‘white’ (e.g., CIE D65 daylight) illuminant. Color
constancy is generally divided into the steps: (i) estimate the chro-
maticity of the illumination, and (ii) adjust the colors based on
the estimated illumination. Many different illumination estima-
tion methods have been proposed. Most, such as that of Barron
and Tsai [11], assume a single illuminant color. Others, such as
Beigapour et al. [12] and Gijsenij et al. [13] aim to estimate the
illuminant on a pixel-by-pixel, or at least region-by-region, basis.

There has been considerable interest in illumination-
invariance of hand-crafted features (e.g., van de Sande et al [14],
Cusano [15]). Maddern et al [16] proposed an illumination in-
variant space derived from the logarithm of the RGB channels but
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(a): Uniform illumination change

× =

(b): Spatially Varying illumination change

Figure 2: Examples of the types of synthetic illumination variation. Left column: input images from the ImageNet dataset [5]. Centre
column: (top) spatially constant illumination, (bottom) masks for spatially varying illumination. Right column: the resulting images.

the resulting invariant is a 1-dimensional descriptor, not a color
descriptor.

In terms of the use of the logarithm of image data, Land
and McCann [17] employed log space in defining Retinex, one
of the first color constancy methods aimed at discounting the il-
lumination to extract ‘lightness.’ Spatial filtering of log image
data also underlies homomorphic filtering ( Oppenheim et al. [18]
and Stockham [19]). Brill [20] discusses an illuminant invari-
ant derived from three of more differently colored neighboring
regions based on Mexican-hat filtering of the logarithm image.
Also, Funt et al. [21] demonstrated the effectiveness of applying
a derivative-of-log-based approach to Swain and Ballard’s color
indexing method [22]. Similar to homomorphic filtering, the pro-
posed LL method converts to log space and applies a derivative
filter; however, unlike homomorphic filtering, it does not then
convert back to linear space but rather sends the LL-space data
directly to a CNN.

Methodology
The approximate invariance of spatial derivative operations

in log-space follows directly from the standard Lambertian model
of reflectance for the case of narrowband sensors. Consider re-
sponses ρk, k ε {R,G,B}. Often it is assumed that ρk can be
rewritten in terms of the sensor response to the illumination, ek,
and sensor response, sk, to the reflectance under equal energy light
as follows:

ρk = eksk (1)

Eq. 1, of course, holds exactly only for the case when
the camera sensors are Dirac delta functions. However, de-

spite the fact that Eq. 1 is technically incorrect it underlies the
von Kries [23] rule of chromatic adaptation.

A camera conforming to the sRGB standard applies an ‘en-
coding inverse gamma’ of approximately 1/γ = 1/2.2 to ρk. It
is approximate since: (i) the full sRGB standard specifies a linear
component for low values; and (ii) some cameras apply additional
tone-mapping operations. Applying 1/γ and taking logarithms
yields,

log(ρ1/γ

k ) = log(e1/γ

k s1/γ

k )

= log(e1/γ

k )+ log(s(1/γ)
k )

= (1/γ)[log(ek)+ log(sk)]

(2)

Under the assumption that ek is sufficiently spatially smooth as to
be considered locally constant, its partial derivative d/dx (simi-
larly for d/dy) of Eq. 2 becomes

d(log(ρ(1/γ)
k )

dx
= (1/γ)

d(log(sk)+ log(ek)

dx
= (1/γ)

d(log(sk))

dx
(3)

In other words, the partial derivatives are approximately in-
dependent of any spatially smooth illumination. Clearly, this in-
dependence extends to the Laplacian as well,

▽(log(ρ(1/γ)
k ) = (1/γ)[

d2(log(sk))

dx2 +
d2(log(sk))

dy2 ] (4)

The effect of 1/γ is, therefore, limited to being a simple scale
factor that is not affected by the illumination. Note that this also
means that the exact value of 1/γ is irrelevant.
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Figure 3: Examples showing how the colors, shading, specularities, and shadows change under the different illumination conditions.
Figures credit from Flash-Ambient dataset [6].

Very little information is lost by taking the Laplacian of the
logarithm of the original sRGB image data. When provided with
the Neumann boundary conditions (i.e., the gradient of the im-
age at its boundaries), the input image is recoverable from the
Laplacian image by integration up to 3 (one per RGB channel)
constants of integration representing the unknown RGB color of
the illumination. Furthermore, the logarithm is invertible and so
loses no information.

One might imagine that shadow edges would violate the as-
sumption of spatially smooth illumination. Of course, shadows do
to a certain extent, but as the example in Figure 4 shows, shadow
edges tend to be much smoother than the edges at color bound-
aries.

To explore the usefulness of the LL input space, the diago-
nal model is used to derive large training and test sets from the
existing ImageNet [5] image set and then evaluate the classifica-
tion performance of a standard CNN, namely ResNet-50 [7] as a
function of whether or not illumination is changed or unchanged,
data augmentation is included or not included, and whether input
is sRGB or Laplacian of the log of sRGB. For a preview of the
results see Table 1.

Implementation Details
Generating the LL image is done simply by taking the log-

arithm of the sRGB input image and then convolving it with the
discrete approximation to the Laplacian using the standard 3× 3
convolution kernel. Namely,0 1 0

1 −4 1
0 1 0

 (5)

Of course, larger Laplacian of Gaussian kernels could be
used instead but this simple kernel was found to be sufficient for
the tests described below.

Training a convolutional neural network requires a lot of la-
belled training data. With the exception of the flash-ambient im-
age data set (Aksoy et al. [6]) discussed and tested below, most
current image datasets (e.g., ImageNet) either are unlabelled in
terms of the illumination or else are very small (e.g., NUS [24]).
As an alternative, we apply simulated illumination changes to ex-
isting images. In particular, to simulate variations in the color
of the incident illumination the ImageNet [5] images are modi-
fied based on the diagonal model of illumination. Two types of
illumination variation are simulated. First is a spatially uniform
change in illuminant color. Second is a non-uniform, random lin-
early varying change in color in a random direction. See examples
in Figure 2. The two types of change are defined as follows.

1. Uniform illumination Change

Each channel is multiplied by a constant αk randomly
chosen from the interval [0.6,1.4], a range that yields a
good range of color casts.

ρ
′
k(x,y) = αkρk(x,y) k ε {R,G,B} (6)

2. Spatially Varying Diagonal Model Illumination Change

A scaling function αk(x,y) is linearly interpolated in
a random direction between limits l1 and l2 randomly
chosen from [0.6, 1.4] and applied to the original image.

ρ
′
k(x,y) = αk(x,y)ρk(x,y) k ε {R,G,B} (7)

A uniform change is, of course, a special case of the spatially
varying case.

These simulated illumination changes model the effects of
illumination on narrowband sensors. Ideally, such illumination
change would be modelled using multi-spectral data and camera
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Figure 4: Plots of the R-channel intensity profiles (upper right) and their derivatives (lower right) taken along the vertical blue line through
a shadow on the arm and the horizontal green line across color boundaries on the hat demonstrating that shadow changes are ‘smooth’
relative to color changes.

sensor spectral sensitivity functions. Unfortunately, this is not
possible since all the available labelled training and test sets in-
clude only sRGB images without any spectral data.

Results on Image Classification
The effect of the LL input is first tested with ResNet-50 [7]

on the image classification task; namely, given an image, predict
the class of the object in the image. The ImageNet [5] dataset
contains 1.2 million training images and 50,000 validation images
covering 1,000 object classes.

During training, standard data augmentation is used, includ-
ing random cropping, mirroring and shifting of the input image.
The data is not normalized during the pre-process stage. In place
of data normalization, an extra batch normalization layer [25] is
included. SGD (stochastic gradient descent) is used as the opti-
mizer. All parameters are initialized using He’s [26] initialization
scheme.

Table 1 reports the accuracy for the validation set based on
a single crop of size 224× 224. For each input type listed in the
left-hand column of the table, a separate ResNet-50 network is
trained. The ‘Varied Illuminant’ cases include 50% spatially con-
stant illumination (Eq. 6) and 50% spatially varying illumination
(Eq. 7).

It is clear from Table 1 that when the network is based on
sRGB input, illumination-induced color changes significantly im-
pact the performance, dropping from 76.0% to 68.7%. Data aug-
mentation helps, boosting the performance to 71.02%, but this is

still a significant drop relative to the 76.00% accuracy when the
illumination is unchanged.

In comparison, the performance of the network trained on
the LL input is almost the same at 74.91% (with color changes)
versus 75.49% (no color changes). As expected, data augmenta-
tion does not further improve performance in the LL case (74.99%
versus 74.92%) since the LL network is already invariant to the il-
lumination.

Results on Flash Illumination versus Ambient
Illumination Images

The tests reported above are all based on synthsized illumi-
nant change, so the question naturally arises as to whether or not
the LL method also works well on real images that do not satisfy
the constraint of slow spatial variation of an illuminant lighting
Lamberian reflectances. How will specularities, shadows and in-
terreflections affect performance? Fortunately, Aksoy et al. [6]
provide a very interesting database of 2,700 real pairs images
incorporating an illumination change. Their database contains
flash-ambient pairs of the same scene, with one image of each
pair taken under flash illumination only, and the other under the
ambient scene illumination. They processed the raw images so
as to subtract out any portion of the ambient illumination from
the images taken with flash so that the flash images are strictly
flash without any contribution from the ambient scene illumina-
tion. Examples of three flash-ambient pairs from the database are
shown in Figure 3. Clearly, the scene colors change quite dra-
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Train on Fixed Train on Varied
Test on Fixed 76.00% 68.87%
Test on Varied 68.74% 71.02%

(a). Using standard sRGB input

Train on Fixed Train on Varied
Test on Fixed 75.49% (0.51↓) 74.92% (6.05↑)
Test on Varied 75.39% (6.65↑) 74.99% (3.97↑)

(b). Using Laplacian of logarithm input

Table 1: The classification percentage on the ImageNet validation set (ILSVRC 2012) when trained/tested with (Train on Varied) and
without (Train on Fixed) illumination-induced color changes. Columns two and three list the results on test sets with and without color
variation. For images without illumination variation the LL classification rate is virtually the same as the sRGB rate and then the rate
decreases insignificantly when illumination variation is introduced. This is in contrast to the sRGB case in which the classification rate
decreases substantially, even when data augmentation (i.e., training on images with varied illuminants) is used. The up/down arrows
indicate the change in classification rate upon switching from sRGB input to LL input.

Trained on F Trained on A
Test on F 77.31% 68.51%
Test on A 67.71% 76.25%

(a). Using normal sRGB input

Train on F Train on A
Test on F 77.17% (0.14↓) 74.51% (6.00↑)
Test on A 73.72% (6.01↑) 76.17% (0.08↓)

(b). Using Laplacian of logarithm input

Table 2: Results on the Flash-Ambient dataset [6]. F indicates the images taken under the Flash-only illumination while A indicates
the images under the Ambient-only illumination. When training with normal sRGB images, a change in illumination condition leads to
significant drop in performance. When training using LL input, the CNNs are much more robust in the face of illumination change. The
up/down arrows indicate the change in classification rate upon switching from sRGB input to LL input.

matically between the flash and ambient cases. The images also
contain specularities that appear in different places in the flash
versus ambient images. Similarly, there are shadows which either
move or disappear entirely. In other words, this dataset of real
images provides and excellent set of test cases for the LL method.

Table 2 lists the classification percentages for the flash-
ambient images. On these images with real, as opposed to syn-
thesized, illumination change, the performance of the LL method
remains consistent despite the change in the illumination, whereas
the sRGB method does not.

Discussion and Conclusion
As a general rule, the usual input provided to a convolution

neural network is an sRGB image. We propose using the Lapla-
cian of the logarithm of the sRGB image as input in place of the
sRGB image itself in order to obtain invariance to many aspects of
the illumination. Tests on images with and without simulated illu-
mination effects as well as real images under flash versus ambient
illumination clearly demonstrate that the performance of networks
trained using the Laplacian of the logarithm of the sRGB as input
is largely unaffected by the illumination. In comparison, networks
trained on sRGB data are susceptible to the illumination.

In conclusion, the tests on both synthetic and real images
confirm that an elegant solution to the problem of the unknown,
uncontrollable and variable effects of the incident illumination is
simply to change the network’s input from the usual sRGB im-
age to the Laplacian of the logarithm of the image. In very rough
terms, the Laplacian of the logarithm is similar to the early pro-
cessing stages of the human visual pathway, which involve loga-
rithmic responses and centre surround (Laplacian-like difference
of Gaussian) operations. Although the theoretical underpinnings
of the method rely on strong assumptions about reflectances and
illuminants, the test results involving real images show that even
when these assumptions are violated the method still works well.
The Laplacian operation is invertible (given Neumman boundary
conditions) and therefore preserves all (up to 3 constants of inte-
gration) the information in the original image and, hence, is ag-

nostic with respect to the type of features the network is poten-
tially able to learn during training. The performance of virtually
any network designed for object recognition and image classifica-
tion is likely to benefit from simply changing its input from sRGB
to the Laplacian of the logarithm of sRGB.
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