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Abstract

Colour correction is the process of converting camera depen-
dent RGB values to a camera independent standard colour space
such as CIE XYZ. Regression methods — linear, polynomial and
root-polynomial least-squares — are traditionally used to solve
for the colour correction transform. More recently neural net
solutions for colour correction have been developed.

This paper begins with the observation that the neural net
solution — while delivering better colour correction accuracy
compared to the simple (and widely deployed) 3X3 linear correc-
tion matrix approach — is not exposure invariant. That is to say,
the network is tuned to mapping RGBs to XYZs for a fixed exposure
level and when this exposure level changes, its performance de-
grades (and it delivers less accurate colour correction compared
to the 3x3 matrix approach which is exposure invariant). We de-
velop two remedies to the exposure variation problem. First, we
augment the data we use to train the network to include responses
for many different exposures. Concomitantly, the trained network
is robust to a changing exposure. Second, we redesign the network
so, by construction, it is exposure invariant.

Experiments demonstrate that, by adopting either approach,
Neural Network colour correction can be made exposure invariant.

Introduction

Colour correction algorithms usually convert camera-related
RGB values into camera-independent colour spaces such as SRGB
[1] or CIE XYZ [2]. In Figure 1, we plot spectral sensitivity func-
tions of the Nikon D5100 camera and CIE XYZ colour matching
functions. If there existed a linear transform which took the Nikon
(or any other camera) sensitivity curves so that they were equal
the XYZ matching function then the same linear transform would
perfectly correct the camera’s RGB responses to the corresponding
XYZ tristimuli. However, there are no commercial photographic
cameras that meet this linear transform condition and so camera
RGBs can only be approximately converted to XYZs.
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Figure 1. Normalized sensitivity functions of Nikon D5100 camera (left) and the CIE
XYZ standard observer colour matching functions (right). The XYZ matching curves

are relative to 'Y’ (green curve) which has a maximum response of 1.
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An illustration of the colour correction problem is shown in Figure
2. Here Raw RGB Nikon D5100 camera response are converted
by linear colour correction to sRGB [1] colour space. The im-
age shown is drawn from the Foster et al. hyperspectral image
set [3] with the RGB and sRGB images calculated by numerical
integration. Both images have the SRGB gamma applied.
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Figure 2. The illustration of the colour correction. The images are generated from
David Foster’s hyperspectral reflectance dataset [3] with Nikon D5100 camera re-
sponses and D65 illumination. While the left one demonstrates Raw RGB image,
the right one represents the colour corrected sRGB image.

The most common approach to colour correction maps RGB
data to XYZ outputs using s 3x3 matrix (found by regression)
such that:

Mp ~x 9]

where p and x represents Raw RGB camera response vector
and XYZ tristimulus respectively. Polynomial [4] and root-
polynomial [5] approaches can also be used for colour correction.
In each case an RGB is expanded according to the order of
the polynomial (normal or root) and a higher order regression
is used to determine the regression transform. As an example
the second order root-polynomial expansion maps [R G B]T
to [RG BVRG YRBVGB ]T (T denotes transpose) and the
correction matrix M is 3 X 6.

Recently MacDonald and Mayer [6] designed a Neu-
ral Net (NN) for colour correction and demonstrated that the
network delivered colour correction that was better than the
linear approach (Equation 1). However, in [7] it was shown
that their NN approach was not exposure invariant. That is, the
network trained to map RGBs to XYZs for a given exposure level
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delivered relatively poor colour correction when the exposure
level changed. The polynomial colour correction algorithm [8]
suffers from the same exposure problem: polynomial regression
works very well for a fixed exposure but less well when exposure
changes [5]. Indeed, this existence of this problem led to the
development of the root polynomial correction algorithm (which,
by construction, is exposure invariant).

Figure 3.

Top: the true sRGB rendering of 12 coloured patches. Bottom left, the

Nikon camera image corrected with a 2nd order polynomial regression. Bottom right
shows the output of polynomial colour correction - calculated for exposure = 1 - applied
to the camera RGBs * 5 (exposure level = 5). All 3 images are scaled so the brightest

value (across all 3 colour channels is 1).

Let us now run a quick experiment to visually understand
the problem of exposure in polynomial regression (where we
can get similar results for the Neural Net). For the UEA
dataset of spectral reflectance images [9], we randomly sampled
12 reflectances. The actual true sRGB, rendered for a D65
whitepoint, image is shown in the top of Figure 3 (a). On
the left of Figure 3 (b) we render these reflectances using
the Nikon camera sensitivities and correct the 12 RGBs to
the corresponding sRGB values using a 2nd order polyno-
mial expansion. In detail the 2nd order expansion has 9 terms,
[R? G% B2 RG RBGB R G B]”, and the colour correction matrix
is 9% 3. In both the sSRGB and fitted camera image, the maximum
over all pixel values (across all 3 colour channels) is scaled to be 1.

Now we multiply the Nikon RGBs and the corre-
sponding sRGB triplets by 5. As before, we calculate the 2nd
order polynomial expansion of the RGBs and then apply the
same colour correction matrix for the exposure=1 condition.
After colour correction we again scale to make the brightness
pixel value (across all 3 channels) equal to 1. The resulting
image is shown bottom right of Figure 3 (c). It is clear both
that the ’colours’ of some patches have changed significantly
(see the corresponding reds in the first column and the corre-
sponding cyan in the first row) and that the colour correction
is more accurate for the colours rendered under the same ex-
posure conditions (panel (b) is more similar to (a) than (c) is to (a)).

In this paper, we seek to make Neural Network colour
correction exposure invariant. We investigate two approaches.
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First, we augment the training data used to define the neural
network with data drawn from many different exposure levels.
Second, we design a new network, which, by construction is
exposure invariant. Our new network has two components. The
chromaticity component network attempts to map camera rgb
chromaticity to colorimetric xyz chromaticity. In the second
component we linearly correct R, G and B to predict X+Y+Z
(mean colorimetric brightness). Given this mean brightness and
the target Xyz chromaticity we can calculate XYZ. Significantly,
we show that the combination of the chromaticity correcting
network and the linear brightness predictor generates XYZs in an
exposure invariant manner.

Experiments demonstrate that both of our exposure
invariant networks continue to deliver better colour correction
than a 3%x3 linear matrix.

Background

Let O (1) denote the k-th camera spectral response function
and @ (1) denote the vector of these functions as in Figure 1. The
camera response to a spectral power distribution E (1) illuminating
the j-th reflectance S; (1) is written as:

p= [ wEWS;Wa @

where w denotes the visible spectrum (400 to 700 Nanometres)
and p denotes the vector of RGB responses. Similarly, given the
XYZ colour matching X (1), the tristimulus response X is written
as:

x= / X(DE()S;(D)dA 3)

Suppose, nx3 matrices P and X record (in rows) the camera
responses and tristimuli of n surface reflectances, respectively. To
find the M in Equation 1 we minimise:

argmin ||PM - X || “)
M

where ||.||f denoted the L2 norm [10]. We can solve for M in
closed form using the Moore-Penrose Inverse [11]:

M= [PTP] “pTx (5)

To extend the regression method we define a basis function
fe? () where the subscript e denotes the type of expansion — here
e=p and e=r respectively denotes polynomial and root-polynomial
expansions — and the superscript o denotes the order of the expan-
sion. As an example, if we are using the 2nd order root-polynomial
expansion [5] then we write:

f,2<p):[RGBm\/ﬁ@]T ©)

Again we can use Equations 4 and 5 to solve for the regression
matrix M. Though, M will be non-square (and depend on the
number of terms in the expansion). For our second order root-
polynomial expansion, the columns of P will be the 6 terms in
the root-polynomial expansion (P is a nx3 matrix) and M will be
6X3.

177



In colour correction, we are often interested in how well al-
gorithms work in terms of a perceptually relevant error metric. As
examples given the ground-truth sSRGB values and their estimated
counterparts (delivered by colour correcting camera outputs) we
can calculate the colour difference in the CIELAB colour space
using the CIE Delta E [2] and CIE Delta E 2000 [12] formu-
lae. However, when a colour difference metric is used, finding
the best colour correction transform can no-longer be solved in
closed form. Rather, a search based optimisation [7] is used to
find regression transform.

As an alternative to regression methods, colour correction can
also be implemented as an artificial neural network. MacDonald
and Mayer’s [6] recently published neural network is illustrated
in Figure 4 and is a leading method for neural network colour
correction.

Output layer
(XY2)

(36 Nodes)

Hidden\Layer 1
(79 Nodes)
Figure 4. MacDonald and Mayer's Neural Net [6]. Input and output layers consist of
3 nodes which are RGB and XYZ respectively. In between, there are 2 hidden layers
formed by 79 and 36 nodes.

This Neural Net has 3189 ‘connections’ indicating the cost
of colour correction is on the order of 3189 multiplications and
additions (the number of operations applied as data flows from left
to right). In comparison, the complexity of the 214 order root-
polynomial correction has 3 square root operations and (when
the 6x3 correction matrix is applied) 18 multiplications and 15
additions i.e. it is 2 orders of magnitude quicker to compute. In
part, the practical utility or otherwise of the Neural Net approach
will rest on the trade-off between how well it improves colour
correction (say compared to the linear method) against it’s higher
computational cost.

Exposure Invariant Neural Nets
Abstractly, we can think of a neural network as implementing
a vector function f() such that

flp) =x )

When exposure changes — for example if we double the quantity
of light — then, physically, the RGB and XYZ responses also
double in magnitude. We would like a colour correction function
to be exposure invariant:

fkp) = kx ®)

where k in Equation 8 is a positive scalar. This homogeneity
property is actually rare in mathematical functions. It holds for
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linear transforms - f(p) = Mp implies that f(kp) = kMp - and
root-polynomials but it is not true for polynomial expansions
[5]. A Neural Net, in order to not collapse to a simple affine
transformation, uses non-linear activation functions. These
non-linearities, while an essential aspect of the network, make
it difficult to attain homogeneity. This homogeneity is exactly
what is necessary to achieve good performance over a wide range
of exposure levels. As we report in the experimental section,
the MacDonald and Mayer network is found not to be exposure
invariant.

In Neural Network research if we observe poor per-
formance for some input data then the trick is to retrain the
network where more of the problematic data is added to the
training set. In Neural Network parlance we augment the training
data set. Here, we have a problem that a network trained for
one light level delivers poor colour correction when the light
levels changes (e.g. when there is double the light illuminating a
scene). So to achieve better colour correction as exposure levels
change, we will augment our colour correction training data
— corresponding RGBs and XYZs for a single exposure level
— with corresponding RGBs and XYZs for several exposure
levels.  Our retrained, using the exposure level augmented
dataset, MacDonald and Mayer Network is our first (more)
exposure-invariant neural network solution to colour correction.

Perhaps a more elegant approach to solving the expo-
sure problem is to redesign the network so it is, by construction,
exactly exposure invariant. We show such an architecture in
Figure 5. In the top network we learn — using Macdonald and
Mayer’s NN — the mapping from input r, g and b chromaticity to
x, y and z chromaticity. When the camera and tristimulus response
are denoted [R G B]T and [X Y Z]T then the corresponding
chromaticities are definedasr =R/(R+G +B),g=G/(R+G +B)
andb=B/(R+G+B);andx=X/(X+Y+Z),y=Y/(X+Y+Z)
and z=Z/(X+Y+Z). In the ’intensity’ network (bottom of
Figure 5) we map R, G and B to predict X +Y +Z by using only a
linear activation function. Multiplying the estimated [x y z]7 by
the estimated X +Y + Z returns an estimated [X Y Z]7.

Informally, let us step through an example to show that the
network is exposure invariant. That is we want to show that the
respective RGBs p and kp are mapped to the estimated XYZs x
and kx. Let’s consider the RGB vector: [10, 50, 40]. To make
the r, g, b chromaticities, we divide RGB values by sum of RGB
yielding the r, g, b chromaticities: [0.1, 0.5, 0.4]. Suppose our
chromaticity network outputs [0.3, 0.4, 0.5] (the estimates of the
X, ¥, z chromaticities) and the second network (the bottom one
in Figure 5) returns 50 as the prediction of X+Y+Z. Now, we
multiple output x, y, z chromaticities by 50, we generate the XYZ
output: [15, 20, 25].

Now, let’s double RGB values: [20, 100, 80]. Clearly, the
chromaticities are unchanged ([0.1, 0.5, 0.4]). Because, the output
of second network is a simple linear dot-product, output must be
equal to 100 (as opposed to 50 before the exposure doubling).
Finally, we multiply the estimated x, y, z chromaticities, [0.1, 0.4,
0.5], by 100 and the final output is [30, 40, 50] (which is exactly
double as before). This simple example demonstrates that if the
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Figure 5. NN-EI architecture with two networks. While the top one learns chro-

maticities, the bottom one learns sum of XYZs. Multiplications of these gives us the
XYZs.

exposure changes by a scalar k then the output of the network
also scales by k and so our new network is exposure invariant.

Experiments

In our experiments, we used the Simon Fraser University
(SFU) reflectance set [13] which comprises 1995 spectral surface
reflectances including, the 24 Macbeth colour checker patches,
1269 Munsell chips, 120 Dupont paint chips, 170 natural objects,
and additional 407 surfaces. The Nikon D5100 camera spectral
sensitivities [14] and the viewing illuminant is D65 [15]. All
RGBs are calculated using numerical integration. And, the target
of colour correction are the corresponding XYZs (also calculated
by numerical integration).

The following algorithms are investigated in this paper:
(1) LS: Least Squares Regression.

(i) LS-RP: Least Squares Root-Polynomial Regression. Here
we use a 2nd order expansion is used.

(iii) LS-RP-Lab: Least Squares Root-Polynomial Regression
where a search based strategy [16] is used to minimise CIE
Delta E error [7].

(iv) NN: MacDonald and Mayer’s neural net [6].

(v) NN-AUG: The NN with a augmented training data with
different exposure levels.

(vi) NN-EI: Here we use two different neural networks. The first
one learns to calculate chromaticities and the second one for
the sum of XYZ.

As suggested in MacDonald and Meyer’s original paper all
the colour correction NNs are trained to minimize CIE Delta E
2000 error.

Our colour correction algorithms are tested using a 5 fold
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cross validation methodology. Here the reflectance dataset is split
into 5 equal sized folds (399 reflectances per fold). Each algorithm
is trained using four of the folds and then tested on the remaining
fold to generate error statistics. The process is repeated 5 times
(so every fold is the test set exactly once). According to this
methodology, the reported error statistics are averages over the 5
experiments. As an example for each fold (used as a training set),
each algorithm will deliver colour correction where a single patch
has a maximum correction error. Because we repeat our experi-
ment 5 times the “maximum error’ according to our experiment is
the average of the 5 maxima.

Colour correction performance for all algorithms is first cal-
culated for a fixed reference exposure (exposure = 1) level. Then
we test our models under different exposure levels to understand
their performance when the exposure level changes. We use expo-
sure values of 0.2, 0.5, 1,2 and 5 (e.g. 0.2 and 5 respectively mean
the amount of light is 1/5 and 5 times the reference condition of
exposure 1).

In NN-AUG, in order to achieve successful results at
different exposure levels, we augmented the training data with
different exposure factors, which are 0.1, 0.2, 0.5, 2, 5, 10 times
the original samples. Then, we tested the models with the test
samples with an original exposure level.

Because the NN-EI is, by construction, exposure in-
variant, it is only trained using the data for the reference exposure
level.

Details about how the Neural Net was trained

For NN, we used MacDonald and Mayer’s [6] neural net-
work which has RGBs as input, XYZs as target, the 3x79x36x3
architecture with 2 hidden layers as shown in Figure 4. As in the
original paper, we use the Adam optimizer with a learning rate
of 0.001 to train the network to minimise CIE Delta E 2000 [12].
We had to raise the number of epochs from 65 (used in the orig-
inal study) to 500 for the neural network to develop a successful
mapping because we were working on relatively small datasets.
We also used a mini-batch gradient descent with a batch size of
8. Our model used 20% of the training data for the validation set
and used the early stopping method, which means that the training
ends automatically if there is no improvement in validation loss
after a specified number of epochs (which in our model is 100)
with a call-back function. We choose the best model based on the
validation loss. The NN-AUG and NN-EI are trained using the
same methodology.

Results

In Tables 1 and 2, we report the CIE Delta E and CIE Delta
E 2000 error results, respectively, of 6 algorithms for the fixed
exposure level reference condition. The mean, median, max
and 95" percentile errors are recorded. Evidently, the neural
networks we implemented have better performance than simple
least-squares across all error metrics. However, performance
is not as good as the Root-Polynomial method — whether
found directly as a least-squares computation or by searching —
outperforms all the neural networks.
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When we compare the colour correction results for
the three neural networks, we see that the neural network we
trained with different light levels (NN-AUG) gives better results
than the original neural network (NN). We note that the NN-AUG
neural network is trained with 6 times more data, and this draws
attention to the fact that neural networks work better given larger
datasets. Regarding this point, the original Macdonald and Mayer
network was trained using an even bigger dataset however, neither
this data not their trained network are publicly available. It is
evident that, for the fixed exposure condition, that the NN-EI
delivers slightly worse results than the NN and NN-AUG for a
single exposure level, however, it’s still better than the standard
Least Squares Regression.

Table 1: Mean Delta E statistics

Mean Max Med 95%
LS 1.62 15.47 0.93 5.32
LS-RP 1.19 13.97 0.70 3.62
LS-RP-Lab 1.10 7.36 0.72 3.39
NN 1.40 12.26 0.93 4.06
NN-AUG 1.30 11.00 0.93 3.56
NN-EI 1.53 9.71 1.03 4.40

Table 2: Mean Delta E 2000 statistics

Mean Max Med 95%
LS 0.94 7.71 0.70 2.62
LS-RP 0.72 713 0.49 2.14
LS-RP-Lab 0.69 3.81 0.52 1.96
NN 0.85 418 0.66 2.15
NN-AUG 0.81 4.37 0.67 1.99
NN-EI 0.95 4.60 0.75 2.29

In Table 3, we report the performance results of the
6 methods at different light levels. As a reminder, in this
experiment, the algorithms were trained with the original light
level and tested with different intensity levels. The linear and
root-polynomial regression methods are unaffected by exposure
(they have the same performance across exposure changes).
Equally, it is evident that the original MacDonald and Meyer NN
performs poorly when the exposure changes.

Although the NN-AUG method exhibits a fair degree
of exposure invariance, its performance still degrades slightly
as the change in light levels is more extreme (compared to the
reference condition). The NN-EI - that was designed to be exactly
exposure invariant - delivers better results than the NN-AUG
method, especially for the conditions where the exposure level is
smaller than 0.5 or bigger than 5.

Finally, we see that while the NN approach outper-
forms linear correction the root polynomial method (much
simpler with an order of magnitude smaller number of parameters
and much less costly training and implementation) performs
significantly better.
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Table 3: Mean Delta E statistics at different exposure levels

EV 0.2 0.5 1 2 5

LS 1.62 1.62 1.62 1.62 1.62
LS-RP 1.19 1.19 1.19 1.19 1.19
LS-RP-Lab 1.10 1.10 1.10 1.10 1.10
NN 2.60 1.57 1.40 1.92 3.77
NN-AUG 2.25 1.50 1.30 1.25 1.38
NN-EI 1.53 1.53 1.53 1.53 1.53

Conclusion

Recently, it has been proposed that Neural Networks can
be used to solve the colour correction problem. Indeed, in line
with previous work found the NN approach delivered a modest
performance increment compared to the (almost) universally
used linear correction method. However, we also found that the
NN approach was not exposure invariant. Specifically, a network
trained for one light could actually deliver poor colour correction
as the exposure changed (there was more or less light in the scene).

In this paper, we showed that NNs could be made ro-
bust to changes in exposure through data augmentation: by
training the NNs with data drawn from many different light
levels. In a second approach, we redesigned the neural network
architecture so, by construction, it was exactly exposure invariant.
Experiments demonstrated that both exposure invariant networks
continued to out perform linear colour correction. However, the
simple exposure-invariant root-polynomial regression method
worked best overall (outperforming the NN by about 25%).

Acknowledgments

This research was funded by Spectricity and EPSRC grant
EP/S028730.

References

[1] M. Anderson, R. Motta, S. Chandrasekar and M. Stokes, “Proposal
for a Standard Default Color Space for The Internet— srgb” Color
and Imaging Conference, No. 1, pp. 238-245 (1996).

[2] R. W. G. Hunt and M. R. Pointer, “Measuring colour”, John Wiley &
Sons, 4th ed. (2011).

[3] D. H. Foster, S. M. C. Nascimento and M. J. Foster, “Frequency of
Metamerism in Natural Scenes” Journal of the Optical Society of
America A, Vol. 23, pp. 2359-2372 (2006).

[4] G.D. Finlayson and M. S. Drew, “Constrained Least-Squares Regres-
sion in Color Spaces” Journal of Electronic Imaging, Vol. 6, No. 4,
pp. 484-493 (1997).

[5] G. D. Finlayson, M. Mackiewicz and A. Hurlbert, “Color Correction
Using Root-Polynomial Regression” IEEE Transactions on Image Pro-
cessing, Vol. 24, No. 5 (2015).

[6] L.MacDonald and K. Mayer, “Camera Colour Correction using Neu-
ral Networks” London Imaging Meeting, pp. 54-57 (2021).

[7]1 A.Kucuk, G. D. Finlayson, R. Mantiuk and M. Ashraf, "Comparison
of Regression Methods and Neural Networks for Colour Correction”
London Imaging Meeting (2022).

[8] G. Hong, M. R. Luo and P. A. Rhodes, "A Study of Digital Camera
Colorimetric Characterization Based on Polynomial Modeling" Color
Research and Application Vol. 26, No. 1 pp. 76-84 (2001).

2022 Society for Imaging Science and Technology



[9] S.Hordley, G. D. Finlayson and P. Morovic, "A Multi-Spectral Image
Database and Its Application to Image Rendering Across Illumination”
Third International Conference on Image and Graphics (ICIG’04).
IEEE, pp. 394-397 (2004).

[10] R. A. Horn and C. R. Johnson, “Norms for vectors and matrices”
Matrix analysis, pp. 313-386 (1990).

[11] R. Penrose, “A Generalized Inverse for Matrices”, Mathematical
Proceedings of The Cambridge Philosophical Society, Vol. 51, No. 3,
pp. 406-413 (1955).

[12] G. Sharma, W. Wu and E. N. Dalal, "The CIEDE2000 Color-
Difference Formula: Implementation Notes, Supplementary Test
Data, and Mathematical Observations" Color Research and Appli-
cation pp. 21-30 (2005).

[13] K. Barnard, L. Martin, B. Funt and A. Coath, “A Data Set for Colour
Research” Color Research and Application, Vol. 27, No. 3, pp. 147-
151 (2002).

[14] M. M. Darrodi, G. D. Finlayson, T. Goodman and M. Mackiewicz,
"Reference Data Set for Camera Spectral Sensitivity Estimation" Jour-
nal of the Optical Society of America A, Vol. 32, No. 3, pp. 381-391
(2015).

[15] O. Noboru, A. R. Robertson, "3.9: Standard and Supplementary
Illuminants”. Colorimetry. Wiley. pp. 92-96 (2005).

[16] J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, "Con-
vergence Properties of the Nelder-Mead Simplex Method in Low Di-
mensions" SIAM Journal of Optimization, Vol. 9, No. 1 pp. 112-147
(1998).

30th Color and Imaging Conference Final Program and Proceedings

181





