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Abstract
Many image-editing tasks are carried out in the gradient do-

main. Suppose that for an image I the gradient ∇I consists of
a pair of fields (p,q); then some image “reintegration” scheme
is tasked with converting derivative fields (p,q) back to image-
space I; typically, a Poisson equation solver is used for this task.
But what if we have altered (p,q) so that this pair (p,q) is no
longer integrable? Then we have to project onto integrable gra-
dient data that will indeed reintegrate to an approximation of the
original image. For example, we may wish to alter (p,q) so as to
emphasize or de-emphasize some aspects of the image, e.g. ame-
liorating wrinkles in skin images (or indeed enhancing them in
the case of ageing a face image).

Here, we propose a new gradient kernel that retains part of
the original image, regularising the reintegration back into the im-
age domain. We compare our approach with the Screened-Poisson
method which includes a term λ times a “screen” term that moves
the solution image back closer to the input image. Effectively, we
are doing a similar adjustment, but we show that the results are
a good deal better than using Screened-Poisson, which tends to
overly blur the output. Moreover, in Screened-Poisson one must
choose a value for λ , which may be different for every image –
here we determine that our new kernel method does not need to
adapt to each image yet delivers comparable or better results.

1. Introduction
Gradient domain processing has attracted significant interest

due in part to the importance of edges in human perception [1].
And indeed many image-editing tasks are carried out in the gra-
dient domain. For example, Poisson Image Editing [2] involves
making changes in the gradient field, and then reintegrating back
to image space. But the reintegration step requires some care.
Indeed, the altered gradient field is no longer an integrable pair
(p,q) and we have to project the approximate gradient onto an in-
tegrable pair by using some variational method such as a Poisson
equation.

To give some intuition about ‘non integrability’, an edge (or
gradient) in a 2-d image has two components: a derivative in the
x- and a derivative in the y-direction. If we “made up” per pixel
x- and y-gradients there is no guarantee that there is actually an
image (which only has one intensity per pixel) that has these gra-
dients. Reintegrating by solving the Poission equation finds the
image whose gradients are closest to the desired ones in a least-
squares sense.

In this paper, we propose that the gradient can be augmented
by making use of a new gradient kernel that retains part of the
original image itself. This regularizes the projection by utilis-
ing the extra part, carrying information about the image itself.
In effect, the augmented gradient, by construction, results in a

more integrable field (and solving for the most consistent rein-
tegration is more straightforward). Our augmentation idea is
straightforward to implement. In the discrete image domain a
derivative (in the x-direction) is computed as I(x+1,y)− I(x,y).
Under our augmented scheme, the ε-derivative is computed as
(1+ ε) · I(x+1,y)− I(x,y). The y epsilon derivative is computed
analogously.

Our idea is reminiscent of the Screened-Poisson method,
which augments the variational objective functional with a term λ

times a “screen” term which typically consists of the image itself.
An issue in that method is that we need to decide upon a value
for λ . Here we compare our new kernel method with Screened-
Poisson and find that while λ in the latter method needs to adapt
for each image, the kernel for our new method can be chosen once
and for all and be applied to any input image.

To evaluate our method and compare to the Screened-
Poisson approach we need to choose an gradient domain appli-
cation. There are, in fact, a plethora of gradient-domain methods
that could be studied, such as shadow-removal, lightness compu-
tation, high-dynamic-range, etc., but here we consider one such
problem: we look at the problem of image smoothing by remov-
ing high derivatives. The task at hand is to remove a good deal
of the gradient information and then reintegrate back to the image
domain. The question becomes “what can we recover if we zero
out much of the gradient information?”. The results show that the
new method is better than or comparable to Screened-Poisson, but
it simpler because we do not need to set any adaptive parameter.

The paper is organised as follows: In §2, we discuss the do-
main in which we are operating, viz. changing the set of image
gradients so as to emphasize certain aspects of the image. In §3
we examine the effect of our new scheme when applied to such a
problem. Section 4 presents results on an extensive standard set
of images, and §5 discusses conclusions and future work.

Gradient Manipulations and the ε -Derivative
Many schemas for manipulating images center upon the no-

tion of altering image derivatives to serve some purpose. In an
exemplar situation, suppose we can identify shadow-boundaries.
Zeroing gradients across such boundaries will tend to produce a
reintegrated image with the lighting change attenuated [3, 4]. A
substantial collection of gradient-manipulation methods appears
in [5].

A feature of such methods is the need to ascend back into the
image domain from the gradient domain. Consider one colour-
channel image I selected from R,G,B one at a time, and for brevity
define ∂xI, ∂yI to stand for ∂ I/∂x and ∂ I/∂y. For the image itself,
the pair of fields (p,q) = ∇I; p = ∂xI, q = ∂yI is indeed integrable
and we can restore I from (p,q).
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Standard Kernel
When (p,q) is not an integrable pair, the usual approach to

such a problem leads to a Poisson equation [6]: given a pair of
fields (p,q), and for an unknown I, we wish to form a best least-
squares solution to the variational problem

Î =
argmin

I ∑

{
‖p−∂xI‖2 +‖q−∂yI‖2

}
, (1)

where Î is the optimum reconstructed image; this results in a Pois-
son equation:

∂
2I/∂

2
x +∂

2I/∂
2
y = ∂x p+∂yq (2)

Mathematically, eq.(2) states that the divergence of the gradient
for the least-squares solution for I is given by the forcing function
on the right hand side.

The solution is best constrained using Neumann boundary
conditions [7]. If we use homogeneous Neumann boundary con-
ditions ∂ I/∂n = 0 then we remove from consideration extraneous
harmonic solutions to Laplace’s equation and have a unique solu-
tion up to an unknown constant of integration [7].

So far, we have a classical Poisson equation which can be
solved iteratively. A non-iterative approach solves the equation
analytically in the Fourier domain [8]. For suppose we go over to
the Fourier values for both p and q, defining

P = F (p) , Q = F (q) , and also F = F (I) (3)

where F denotes the Fourier transform.
Now suppose the effect of a derivative filter, when expressed

in the Fourier domain is filter ax for partial derivative ∂x and ay
for partial derivative ∂y. Here, let us adopt forward differenc-
ing to express partial derivatives. That is, let us use the filter φ

= −1 +1 for the x-derivative, meaning (−1) times the
current pixel plus (+1) times the pixel to the right of the cur-
rent pixel; and let φ T express the y-derivative (with T meaning
transpose). Then for angular frequency ωx,ωy, the filter ax be-
comes exp(iωx)− 1 in the Fourier domain. (This filter differs
from that in [8] because the latter uses central-differencing as op-
posed to forward-differencing as here.) Using a 1-based spatial
indexing schema for retinal coordinates x,y, if the image resolu-
tion is (M,N) then x = 1..N, y = 1..M, and ωx = 2π(x−1)/N and
ωy = 2π(y−1)/M (with ωx and ωy being M×N arrays).

Now we can write our functional equation in Fourier coordi-
nates; we have that the best solution for the Fourier transform of
the solution image F̂ is

F̂ =
argmin

F ∑

{
‖P−axF‖2 +‖Q−ayF‖2

}
(4)

Recall that P and Q could consist of the Fourier domain versions
of altered, manipulated gradient values (p,q).

Solving eq. (4) for F̂ , we arrive at

F̂ =
a∗xP+a∗yQ

a2
x +a2

y
(5)

similar to that in [8] but for forward-differences. Let us call this
method the FP (Frankot-Chellappa) solution. Examples of the
output for the FC method in various cases are examined below in
§3, and compared to our new method.

Screened Poisson
The Screened Poisson (SP) method [9] improves upon the

FC method by including a subsidiary term in the objective func-
tion (4) meant to drive the solution closer to a “screen” field, typ-
ically the original image I itself, to include a data term that the
reconstructed function must also approximate. The SP method
includes a user-defined scalar parameter λ that expresses the
amount of “screening”. In this case the variational objective (1)
becomes

Î =
argmin

I ∑

{
‖p−∂xI‖2 +‖q−∂yI‖2

}
+λ (I−u)2 (6)

where typically the data term u is the original image itself.
The Euler-Lagrange equation for this modified variational

problem is the screened Poisson equation

∂
2I/∂

2
x +∂

2I/∂
2
y = ∂x p+∂yq+λ (I−u) (7)

A direct method for this is to carry out the needed projection in
the Fourier domain. The minimization using the direct method in
Fourier space then becomes

F̂ =
argmin

F ∑

{
‖P−axF‖2 +‖Q−ayF‖2

}
+λ (F−U)2 (8)

where U = F (u), with solution

F̂ =
a∗xP+a∗yQ+λU

a2
x +a2

y +λ
(9)

Let us call this method the SP solution. For λ → 0 the SP solution
moves to the FC solution; and as λ becomes large, the SP solution
goes over to the screening function u.

Robust Kernel
As is known, and as we ourselves discover in the experimen-

tal section, the best value of the parameter λ in the SP method
varies from image to image. Therefore here we set out an al-
ternative approach where a single value of a different parameter
is held constant. To do so, we introduce the new kernel φD =
−1 1+ ε . Immediately, we can see that the new operator

keeps a partial amount of its argument, as opposed to the familiar
φ , which consists of the derivative only.

Let us denote the ε-derivative as Dx, Dy. It is helpful to
separate the ε-derivative into 2 parts:

DxI = ∂xI +χx

DyI = ∂yI +χy

(10)

That is, the usual gradient plus an “extra” two parts χx,χy:

χx = ε I←

χy = ε I↑

where I← is the image, shifted left; and I↑ is the image shifted up.
(11)

We refer to the robust kernel operator as an “ε-derivative”
[10]. We argue in [10], and show there an embodiment in terms
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of the HDR problem, that due to the regularization brought about
by use of the ε-derivative, halos and other image artifacts can be
ameliorated. The new operator provides a more robust derivative
structure since it retains part of the image information lost in the
standard gradient.

Hence, the method proposed is as follows. Suppose we wish
to alter the gradient of an image in some meaningful way — for
example, here as a test case we set to zero all high-magnitude
derivatives, thus removing high-frequency features and effec-
tively smoothing the image. The most simple approach for the
smoothing problem as stated is to form the gradient ∇I for an in-
put image I and, using a Boolean mask aimed at removing high
values of the gradient, set to zero targeted gradients by multiply-
ing by the mask, thus forming the pair (p,q), an approximation of
a gradient.

Recall that the new operators Dx,Dy consist of the gradi-
ent plus an extra term. So we propose here to indeed threshold
the image gradient ∂xI,∂yI part of DxI,DyI but keep the extra
terms stemming from the ε-derivative from the original image
unchanged, so that part of the original image persists in the new
operator, as we desired.

Now we again go over to Fourier space. As an extension of
the FC solution, now we let

P = F (p + χx)
Q = F (q + χy)

(12)

where χx, χy are the extra parts of Dx,Dy.
We have the same objective function as in eq. (4) and indeed

the same solution eq. (5) as in the FC solution; but with the crucial
difference that now we are operating with the full Dx,Dy operators
and full extended parts: the filters are now the robust Fourier-
filters ax = exp(iωx)− (1+ ε), ay = exp(iωy)− (1+ ε).

3. Assessment of ε-Derivative
Let us consider a standard gradient-manipulation scenario

wherein we smooth an image, by zeroing large-value gradients.
Consider the image Fig. 1(a). Here we mean to use an exemplar
image in the first instance, in order to guide the development and
understand all that takes place for a suitable image.

To provide an aggressive operation, so as to be able to clearly
see the effects of the various solutions, suppose we remove all
gradients that are over the 50-percentile of gradient magnitude.
Define the gradient magnitude as

mag =

(
3

∑
k=1

(∂xIk)
2 +

3

∑
k=1

(∂yIk)
2

)1/2

(13)

and threshold

mask =
(

mag < 50th quantile of mag
)

∇′I = ∇I×mask

(14)

This says that gradients greater than the 50th quantile are set to
zero.

As a first effort, consider Fig. 1(b), which shows the result of
standard Gaussian smoothing on the input image. This is a useful
result, but arguably too blurred. We would like to have a smoothed

result, but one that retains a good deal of the information in the
image. Moreover, we wish to test the ε-derivative by zeroing out
some of the gradient information.

So to continue, let us zero out high-gradient values: Fig. 1(c)
displays the pixels where we do not zero out the gradient (i.e.,
where the mask is 1); that is, where we retain low-magnitude gra-
dients. In the present application this is given by 50% of the gra-
dients, of course, and the mask image shows how substantial a
removal of the gradient information we are carrying out.

Then the FC solution is as is shown in Fig. 2(a). This is
clearly a result that is not of much use to us: removing such a
substantial amount of gradient information does not generate an
image adhering to either the colour or texture of the original. That
the result is so poor is an indication that the gradient field is far
from being integrable.

However, looking at the original in Fig. 1(a), re-rendering
this image so that the large derivatives are set to 0, our expectation
is broadly that the output image should look like the input but with
any large changes eliminated, with resulting smoothing.

Now, we consider the ε-derivative method, we arrive at
Fig. 2(c). We have found that we can in fact hold fixed the ε

parameter in this method, using ε = 0.2. Clearly, the result gels
well with our expectations. The image looks smoothed but be-
cause many small derivatives are kept there is good image detail
too.

Now, let us compare against the the SP method.Here we have
to set the adaptive parameter λ ; to favour the SP method as much
as possible, we quantify how closely the SP solution for a par-
ticular λ matches the ε-derivative solution below, in terms of the
PSNR (peak signal to noise ratio). We traverse λ values in the
range [0.0,0.2], where images are scaled to values [0.0,1.0]. A
typical best-result occurs with λ between 0:01 and 0.10. Using
the value 0.01, we obtain the result in Fig. 2(b), a better result than
for the FC solution because the screened method pulls the solution
back towards the input image; but the result is so smoothed its util-
ity is reduced. Clearly, in terms of this example the ε-derivative
method delivers the best smoothed output image.

To quantify the relationship between these smoothed images
and the original image, we need a metric δ (I, I′) that takes into
account both colour, as in using PSNR over the 3 colour-channels,
and also texture, since we are smoothing images. Here we suggest
the Kullback-Leibler Divergence distance (the relative entropy)
from the original image, but calculated just for the (mask = 0)
pixels, i.e., how well does an algorithm regenerate the missing-
gradient information, as shown in the reintegrated image.

For the SP method, and using 128-bin histograms, we find a
KL divergence of 0.0426 bits. Whereas for the Epsilon-derivative
solution we find a KL divergence of 0.0124 bits, or about 4 times
better.

4. Further Tests
In Fig. 4, we run the competing methods on the 24 images

in the Kodak-CD image database.1 We see that, just as for our
test image, the FC solution is not useful, the screened SP solution
is reasonable but blurry, and the Epsilon-derivative solution is the
best output. For the 24 images, some of which are shown in Fig. 4,
Fig. 3 shows a histogram of the value of each best-value of λ ,

1http://r0k.us/graphics/kodak/
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one for each image, such that the SP solution best matches the
epsilon-derivative result, the measure being the PSNR for the SP
solution compared to the epsilon-derivative result. We see that
the SP method may work comparably to the epsilon-derivative
method, but often does not and cannot be relied upon.

5. Conclusion
In this work we have presented a novel, alternative Fourier-

domain approach for solving for a projection of a set of noninte-
grable fields (p,q) to a closest reintegrated image. The new idea
is to use a robust form of gradient, the ε-derivative, to regularize
reintegrating from the gradient domain back to the image domain.
We found in tests that we could settle on values ε = 0.2 for any
image.

Future work includes expanding the set of problems investi-
gated in terms of the new ε-derivative operator.
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(a) (b) (c)

Figure 1. Smoothing: Suppress large gradients above 50-percentile. (a): Input image. (b): Gaussian smoothing. (c): Mask for retained gradients.

(a) (b) (c)

Figure 2. Smoothing: (a): FC solution. (b): SP solution. (c): Epsilon-derivative solution.
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Figure 3. For each image of the 24 in the database, favour the SP method as much as possible by choosing λ to match the epsilon-derivative solution as

closely as possible.

Figure 4. Kodak-CD database of 24 images. Smoothing: Input image, FC solution; SP solution; Epsilon-derivative solution. Images shown are those with [min,

5-percentile, median, 95-percentile,max] PSNR of SP method, compared to the epsilon-derivative method. The λ values for these are λ =[ 0.080, 0.070, 0.120,

0.090, 0.095], for PSNR values [ 26.807, 29.573, 31.729, 35.874, 36.318 ] dB.
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