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Abstract 
We consider the problem of estimating surface-spectral 

reflectance with a smoothness constraint from image data.  The total 
variation of a spectral reflectance over the visible wavelength range 
is defined as the measure of smoothness.  A penalty on roughness, 
equivalent to smoothness, is added to the performance index to 
estimate the spectral reflectance functions.  The optimal estimates 
of the spectral reflectance functions are determined to minimize a 
total cost function consisting of the estimation error and the 
roughness of the spectral functions.  An RGB camera and multiple 
LED light sources are used to construct the multispectral image 
acquisition system.  We model the observed images using spectral 
sensitivities, illuminant spectrum, unknown spectral reflectance, a 
gain parameter, and an additive noise term. The estimation 
algorithms are developed for the two estimation methods of PCA 
and LMMSE.  The optimal estimators are derived based on the least-
square criterion for PCA and the mean squared error minimization 
criterion for LMMSE.   The feasibility of the proposed method is 
shown in an experiment using three mobile phone cameras.   It is 
confirmed that the optimal estimators improve the accuracy for both 
original PCA and LMMS estimators. 

Introduction  
Surface-spectral reflectances of natural objects like fruits, leaves, 

and woods in natural scenes and artificial ones like plastics, paints, 
papers, and ceramics are usually smooth in the visible wavelength 
range.  Principal component analysis (PCA) is often performed to 
represent the spectral function shape using a small number of basis 
functions on the assumption that the spectral reflectance is smooth 
[1]-[3].  As a result, the low-dimensional linear model using the 
small number of basis functions is successfully applied to solving 
the color constancy problem [4]-[5] and estimating surface and 
illumination functions in a multiband vision system [6].  Surface-
spectral reflectances of most objects can be represented with the use 
of five to seven basis functions. 

Another approach to generate smooth spectral functions is to use 
a smoothness constraint.   In fact, we may encounter the problem 
that the reflectance functions obtained are too jagged to be realistic.  
The total wavelength variation of reflectance functions, which 
mathematically means the square of derivative integrated over the 
visible range, can usually be defined as a measure of the smoothness.   
There were some discussions to find the smoothest reflectance 
functions with the least variation of reflectance functions under an 
illumination condition, which means the function that has maximum 
smoothness [7]-[9].  However, this approach is only successful in 
suppressing the spectral variation of reflectance functions.  It does 
not necessarily minimize the estimation error of the spectral 
reflectances. 

To date, many methods have been proposed for estimating the 
spectral reflectance of an object surface from image data (see [10]).  

In the finite-dimensional modelling methods [11]-[14], spectral 
reflectance is approximated by a linear combination of a small 
number of basis functions via such an analysis method as PCA.  The 
weighting coefficients in the linear combination are determined to 
minimize the squared error for the image data.  The Wiener 
estimation methods [15]-[21] are baSsed on a statistical approach, 
where the noise in the imaging system and a certain statistic of 
spectral reflectance are considered.  The algorithm is derived by 
minimizing the estimation error. The Wiener estimation methods are 
known as the most common methods when the spectral sensitivity 
functions of the imaging system are known.  Recently, an improved 
estimation method, called the linear minimum mean-square error 
(LMMSE) estimator, was proposed to estimate surface-spectral 
reflectance from the image data [10].  In this method, a linear 
estimator was derived in a more general form than the Wiener 
estimator.  The derived LMMSE estimator has the advantage of 
being an unbiased estimator.  It is verified theoretically that the 
estimation accuracy of the LMMSE estimator is better than that of 
the Wiener estimator.  

In this paper, we consider the problem of estimating surface-
spectral reflectance with a smoothness constraint from the image 
data.  A penalty on the roughness of the spectral reflectance, which 
is equivalent to the smoothness constraint, is added to the 
performance index to estimate the spectral reflectance functions.  
The optimal estimates of the spectral reflectance functions are 
determined to minimize a total cost function consisting of the 
estimation error and the roughness of the spectral functions. 

We suppose a multispectral image acquisition system in the 
visible range, where an RGB digital camera captures multiple 
images for the scene of an object under multiple light sources.  The 
observed image data are described using the three spectral functions: 
camera spectral sensitivities, illuminant spectra, and unknown 
surface-spectral reflectance, also the two parameters of a gain and 
an additive noise term.  These parameters are estimated in a separate 
way. 

Under this observation model, we develop optimal algorithms to 
achieve the best performances for the two estimation methods of 
PCA and LMMSE. In addition, we show that the smoothness 
constraint effectively improves the estimation accuracy of the 
surface-spectral reflectance functions. 

In the following, first, we describe the observation model based 
on a multispectral image acquisition system and define the 
smoothness constraint on spectral reflectance functions.  Next, the 
optimal estimation algorithms are derived by minimizing the total 
cost function with the smoothness constraint.  The least-squares 
method is used for PCA, and the mean squared error minimization 
method is used for LMMSE.  Finally, the feasibility of the proposed 
estimation methods for spectral-reflectance estimation is confirmed 
in an experiment using different mobile phone cameras.  The 
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estimation accuracies are compared with the originals of the PCA 
and LMMSE methods. 

Observation Model and Smoothness 
Definition 
A. Observation Model 

Figure 1 shows a multispectral imaging system in the visible 
range. An RGB camera captures multiple images for the scene of an 
object under multiple light sources with different illuminant spectra.  
Let M be the number of light sources; hence, the total number of 
system outputs is 3M because the camera has three RGB channels.  
Let the number i denote the output number by the combination of m 
lights (m=1, 2, …, M) and c color channels (c=1, 2, 3), so that i=1, 
2, 3, ..., 3M.  The observations iy (i=1, 2, …, 3M) by the camera 
outputs are described as 

700

400

( ) ( ) ( )
i m c i

y g x e r d nλ λ λ λ= +∫ ,                                  (1) 

where ( )x λ is the surface-spectral reflectance of a target object, 
( )

m
e λ (m=1, 2, …, M) represent the spectral power distribution of 
the light sources, ( )

c
r λ  (c=1, 2, 3) denote the spectral sensitivity 

functions of the camera in the visible range (400–700 nm).  
Furthermore, 

i
n denotes the noise in the imaging system.  We 

assume that 
i

n is the white noise with zero mean and the variance a, 
and is uncorrelated with ( )x λ .  Note that

i
y represent the digital 

camera outputs, while ( )x λ , ( )
m

e λ , and ( )
c

r λ  are physical 
quantities.  The coefficient g in Eq. (1) is the weight used to convert 
the model outputs to the practical digital outputs, which is called the 
gain parameter.  The parameter g is unique to the imaging system, 
which depends on the conditions of imaging system.  This parameter 
can be determined separately using a white reference standard with 
known spectral reflectance (see [10]).   

The spectral functions of reflectance, illuminants, and 
sensitivities are sampled at N wavelength points with equal intervals 
in the visible range and represented by N-dimensional column 
vectors as   
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where m=1, 2, …, M and c=1, 2, 3.        
The discrete representation of the observation model is then 

expressed in matrix form as follows: 

g= +y Ax n ,                                                     (3) 
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The symbol (. *), superscript t, and λ∆ represent the elementwise 
multiplication, matrix transposition, and wavelength sampling 
interval, respectively.  Therefore, A is a (3M-by-N) matrix defined 
by the illuminant spectra and the spectral sensitivities.  The vector n 
denotes the observation noise.  When the spectral functions are 
sampled with λ∆ =5 in the range of 400–700 nm, the spectral 
functions are represented by 61-dimensional column vectors with 
N=61. 

 
Figure 1 Observation model for the imaging system using an RGB camera. 

B. Smoothness Definition 
We can define the total variation of a spectral reflectance as a 

measure of smoothness, that is the square of its derivative, integrated 
over the entire visible range.  Mathematically it is described as (see 
[7]): 

( )( )2
700

400

dx d dλ λ λ∫ . (5) 

We use the total variation as the smoothness constraint. The spectral 
reflectance function has maximum smoothness when the total 
variation is least, i.e., the smoothest.  In this paper, we also use the 
term of roughness, which is the opposite of smoothness.  The total 
variation corresponds to the roughness of the spectral reflectance 
function.   The smoothest reflectance function is that function for 
which the total variation and so the roughness is least. 

For convenience of numerical computation, the smoothness 
constraint is represented in discrete form using matrices. Firsts, the 
integration in Eq. (5) is approximated as  
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Then, the discrete representation is given as [9] 
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where J is a (N-by-N) matrix for the differentiation operator defined 
by 
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Thus, we use 
2

Jx as the smoothness (and roughness) constraint. 

Estimation Methods of Surface-Spectral 
Reflectance 
A. Statistical Properties of Spectral Reflectance 

We use a spectral reflectance database to obtain the statistical 
quantities of the surface-spectral reflectance x such as the average

0x and the covariance P.  It should be noted that the ensemble 
average of surface-spectral reflectance is not zero because the 
spectral reflectance satisfies the condition 0 ( ) 1

i
x λ≤ ≤  (i=1,2,…, 

N)   So, we set the average of x as  

[ ]
0

=E x x ,  (9) 

which has 
0
≥x 0 , and the covariance matrix of x as  

( )( )
0 0

.
t

= − −  P E x x x x  (10) 

B. PCA Method with Smoothness Constraint 
When we suppose that a limited number of basis functions 

represents the spectral reflectance, the estimated spectral reflectance
x̂ is described using the finite dimensional model as 

   
0

1

ˆ
K

i i

i

w
=

= +∑x b x ,  (11) 

where 
i

b  (i=1, 2, …, K) are the basis vectors, representing the 

basis functions, and iw are the weighting coefficients.  The basis 
vectors are obtained from the principal components of a dataset 
consisting of many spectral reflectances.  When the covariance 
matrix P is decomposed into orthogonal components by using 
eigenvectors and eigenvalues, we have 

   
t=P QΛQ , (12) 

where 
1 2

[ , , ..., ]
N

=Q q q q  is an (N-by-N) matrix constructed with 

the eigenvectors 
i

q (i=1, 2,…, N) and Λ is an (N-by-N) diagonal 

matrix constructed with eigenvalues '
i

λ (i=1, 2,…, N), arranged in 

descending order as
1

' '
i i

λ λ
+

≥ .  The basis vectors in Eq.(11) are 
then obtained as the K principal components taken from the first K 
eigenvectors

1 2
, , ...,

K
q q q .  The principal components are also 

obtained from the spectral reflectance dataset's singular value 
decomposition (SVD). 

 Let  
i i
=b q (i=1, 2,…, K) .  The residual error of the 

observations is described as 
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The term of smoothness constraint is described as 

   
0

1

0
'

K

i i

i

w

=

= +

= +

 
  
 
∑Jx J x b

Jx B w

, (15) 

where  

[ ]
1 2

' , , ...,
K

=B Jb Jb Jb . (16) 

The present problem is to determine w from a set of the 
observations.  We solve this problem by minimizing the residual 
error and the roughness of the spectral reflectance based on the 
least-squares criterion.  The cost function is then described as 

   ( ) 2 2

0
' ' 'L µ= − + +w y A w Jx B w , (17) 

where µ is a weighting parameter for the roughness.  When 

computing the derivative L∂ ∂w , the optimum w to minimize L is 
given as a solution for the following equation. 

   0
' ' ' ' ' ' 't t t tµ µ− + + + =A y A A w B Jx B B w 0

. (18) 
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Therefore, the optimal weight 
opt

w is determined as 

   ( ) ( )1

opt 0
' ' ' ' ' ' 't t t tµ µ

−

= + −w A A B B A y B Jx . (19) 

The estimate of x is finally obtained with 
opt

w in the form 

   
opt , 0

1

ˆ
K

i i

i

w
=

= +∑x b x . (20) 

C. LMMSE Method with Smoothness Constraint 
The Wiener estimator of x is sought in the form ˆ =x By to 

minimize the mean-square error (MSE) between the estimate x̂ and 
the original x, that is 2ˆ−  E x x .  On the other hand, the 
LMMSE estimate is sought in the more general form  

ˆ ,= +x By b  (21) 

where B is an (N-by-3M) matrix and b is an N-dimensional constant 
vector.  The optimal estimate is obtained as (see [10]) 

   ( ) ( )
12

LMMSE 0 0
ˆ ,t tg g a g

−

= + + −x x PA APA I y Ax  (22) 

where a is the noise variance.  The estimation error of the LMMSE 
estimator is always smaller than that of the Wiener estimator. 

Now we consider the problem of minimizing the extended cost 
function with the smoothness constraint, which is described as 

   
( )[ ]

2 2ˆ ˆ( , )

ˆ ˆ ˆ2t t t t

L µ

µ

= − +

= − + +

  b B E x x Jx
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When we define 

( ) ˆtµ= +x I J J x , (24) 

the cost function is rewritten as 
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It should be noted that the second term on the right-hand side in 
Eq.(25) is a constant vector, which is independent of b and B.  The 
first term can be further rewritten using the trace of a square matrix 
as 

   ( ) ( )( ){ }1

tr
ttµ

−

+ − −  I J J E x x x x  . (26) 

The minimizer of ( )( )t
− −  E x x x x  in the sense of positive 

semi-definiteness minimizes Eq.(26).  Because this estimate has no 
smoothness constraint, we have 

LMMSE
ˆ .=x x   Finally, from the 

definition in Eq.(24), we obtain the optimal estimate as 

( ) 1

LMMSE
ˆ ˆtµ

−

= +x I J J x . (27) 

Experimental Results 
A. Experimental Setup 

We conducted experiments using different mobile phone 
cameras to confirm the feasibility of the proposed methods in 
estimating the surface-spectral reflectance.  Three mobile phone 
cameras were (1) Apple iPhone 6s, (2) Apple iPhone 8, and (3) 
Huawei P10 lite.   The three mobile phone cameras' relative RGB 
spectral sensitivity functions are available at http://ohlab.kic.ac.jp/.   

The camera images were captured in Adobe’s digital negative 
(DNG) format, which is a lossless raw image format. The dark 
response was discarded from the camera output, so that the signal 
component represents a linear response to the input radiation.  We 
used our own demosaicing algorithm to reconstruct a full-color 
image from the captured image. The bit depth of the cameras 
employed was 12 bits.  The illumination light sources used in our 
experiments were seven (M=7) LED light sources.  The spectral 
power distributions are shown in Figure 2.  A spectral reflectance 
database was used to obtain the statistical quantities of the average 
reflectance

0
x and the covariance P, and the basis functions from the 

principal components of spectral reflectances.  The database 
adopted was a data set of approximately 1500 spectral reflectances, 
which includes manmade objects such as papers, paints, and plastics 
as well as natural objects such as rocks, leaves, and skins..  All 
spectral functions were sampled at 5-nm intervals in the visible 
range (400–700 nm).  Hence, we have λ∆ =5 and N=61.   

Color samples from the X-Rite Color Checker Passport Photo 
were used to validate the reflectance estimation.  Figure 3 (a) shows 
the imaging target comprising 24 color checkers and the white 
reference standard (Spectralon).  Figure 3 (b) depicts the spectral 
reflectance values measured using a spectral colorimeter (CM‐
2600d, Konica Minolta).   

The color images acquired under each illumination light were 
combined into a 21 channel multispectral image.  The corresponding 
patch areas obtained multispectral observation data for each color 
patch. The gain parameter g and the noise variance a in the 
observation model were determined using the L1 norm 
minimizations based on the Spectralon data, according to the 
procedure shown in [10]. 
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Figure 2 Spectral power distributions of seven LED light sources. 

 
(a)                                               (b) 

Figure 3 Color checkers adopted for reflectance estimation validation. (a) 
Imaging targets comprising 24 color checkers and the white reference 
standard (Spectralon). (b) Spectral reflectances of the 24 color checkers and 
the white reference standard measured by the spectral colorimeter. 

B. Estimation Results 
The accuracy of the estimated spectral reflectances was 

evaluated by the root-mean-square error (RMSE), calculated as the 
root of the average of the squared norm of the estimation errors per  
wavelength over the 24 color checkers. The RMSE calculation was 
changed from the calculation in [10].  Table 1 summarizes the 
performance values by the proposed methods for the spectral 
reflectance estimation, where the RMSE is presented for each case 
using the three mobile phone cameras. The PCA and LMMSE 
methods optimized with the smoothness constraint are compared, 
respectively, with the original PCA and LMMSE methods without 
the constraint. 

The principal components in the PCA method were obtained 
from the SVD of the spectral reflectance data set.  The first five 
principal components were selected as the basis functions, so that 
K=5 in Eq. (11) and Number of Bases=5. The errors in Table 1 were 
minimized using these basis functions.  The PCA method may be 
easier than the LMMSE method because it does not require the 
parameter a of the noise variance.  However, the PCA method was 
significantly less accurate than the LMMSE method as shown in 
Table 1. The parameter µ represents a weighting parameter for the 
roughness. 

Table 1 shows that the spectral reflectances’ estimation 
accuracies for all mobile phone cameras are improved by the 
proposed methods for PCA and LMMSE compared with the original 
methods. In particular, the improvement in the PCA method looks 

more significant than that in the LMMSE method.  However, it can 
be confirmed that the minimal RMSE among all methods is 
performed by the LMMSE method optimized with the smoothness 
constraint.  Thus, the superiority of the proposed LMMSE method 
can be confirmed from the overall point of view. 

We also evaluated the performance using the color difference. 
The CIE-LAB color differences under the illuminant D65 were 
calculated between the LAB coordinates based on the estimated 
spectral reflectance and the ones based on the directly measured 
spectral reflectance by a spectrometer, which was used as the ground 
truth.   The CIE-LAB color differences when using iPhone 6s were 
DE76=5.49 and DE00=2.76 for the original LMMSE method 
without the constraint and DE76=4.82 and DE00=2.56 for the 
proposed LMMSE method with the smoothness constraint. Thus, 
the proposed method improved the color difference. 

Table 1 RMSEs of the surface-spectral reflectances estimated 
via two methods, in which three different mobile phone 
cameras captured the 24 color checkers under 7 LED light 
sources. 

 

Conclusions 
This paper considered the problem of estimating surface-

spectral reflectance with a smoothness constraint from the image 
data.  The measure of smoothness was defined to be the total 
variation of spectral reflectance, that is, the square of its derivative, 
integrated over the entire visible range.  A penalty on the roughness 
of the spectral reflectance, equivalent to the smoothness constraint, 
is added to the performance index to estimate the spectral 
reflectance functions from image data.  The optimal estimates of the 
spectral reflectance functions are determined to minimize a total 
cost function consisting of the estimation error and the roughness of 
the spectral functions. 

First, we supposed a multispectral image acquisition system, 
where an RGB camera captures multiple images for the scene of an 

Phone 
Model 

RMSEs over 24 color checkers 

PCA 
method 
optimized 
with 
smooth 

PCA 
original 
method 

LMMSE 
method 
optimized 
with 
smooth 

LMMSE 
Original 
 method 

iPhone 
6s  

0.03583 
N. 
bases=5  
µ =45000 

0.04140 
N. bases 
=5  
 

0.03440 
µ =2.0 
 

0.03472 
 
  

iPhone 
8  

0.04062 
N. 
bases=5  
µ= 
200000 

0.04161 
N. bases 
=5 

0.03588 
µ =1.0 
 

0.03597 
 
  

Huawei  
P10 lite  

0.04158 
N. 
bases=5   
µ 
=150000 

0.04267 
N. bases 
=5 
 

0.03962 
µ =3.0 
 

0.04029 
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object under multiple light sources.  The observed image data were 
modeled using the spectral functions of spectral sensitivities, 
illuminant spectra, and unknown spectral reflectance also the two 
parameters of a gain and an additive noise term.  Next, we developed 
the optimal estimation algorithms to minimize the total cost function 
for the two estimation methods of PCA and LMMSE.  The optimal 
estimators for PCA and LMMSE were derived based on the least-
square criterion and the mean squared error minimization criterion, 
respectively. 

We experimented to confirm the feasibility of the proposed 
method using three mobile phone cameras and seven LED light 
sources.  A spectral reflectance database was used to obtain the 
statistical quantities and the basis functions of spectral reflectance 
functions.  The RMSEs evaluated the estimation accuracy for the 
test color checkers.  We also showed the performance using the 
color difference. The proposed methods optimized based on the 
smoothness constraint improved the accuracy for both PCA and 
LMMS estimators.   Especially, the propose LMMSE method was 
found to be the best in terms of estimation accuracy. 
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