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Abstract
We propose a new anisotropic diffusion process for removing

noise from MRI images without distorting the edges. The method
is based on a simple principle: any diffusion that increases a
gradient at neighbouring pixels should be prohibited. From this
principle, we deduce an inequality that allows diffusion along the
edges but not across them. We introduce promising results us-
ing synthetic data with various types of noise as well as real MRI
scans.

Introduction
The arrival of three-dimensional medical and industrial

imaging, presented imaging researchers with the challenge of
extending algorithms that are used in enhancing grey scale and
colour images to the higher dimensional spaces, such as magnetic
resonance imaging (MRI) and 3D scanning. One of the most im-
portant algorithms that we wish to extend is an efficient method
to remove digital noise.

In the image processing literature, there are many noise mod-
els. There is Gaussian noise, electronic noise, white noise, Brow-
nian noise, salt and pepper noise, periodic noise, quantisation
noise, speckle noise, and structured noise. Noise is simply un-
avoidable, which is why all digital cameras are equipped with
noise removal algorithms as part of the image production pipeline.
Given the many types of noise and the number of digital images
captured on a daily basis, it is to no surprise that the literature and
commercial interest in the topic is vast.

Theoretically, a real image is defined as the sum of a noise
free matrix and another that is pure noise. Given this definition
the best noise removal method is one that retrieves the ideal im-
age and separates it from the noise data. This ideal task is, how-
ever, difficult due to the similarity between noise and other high
frequencies elements such as edges. Thus, the goal of noise re-
moval can be reformulated to include the removal of noise while
preserving texture, edge details and maintaining the integrity of
region boundaries.

What is required is to remove high frequencies associated
with noise while preserving those pertaining to edges and texture.
To achieve this goal we need to recognise edges and smooth the
data along but not across them. This task is achieved in landmark
noise removal algorithms, including anisotropic diffusion which
uses the principles of heat diffusion in mediums with different
diffusion constants to develop an algorithm which starts by cal-
culating the gradients in four directions: north, south, east and
west. Finally, the image data is diffused in the direction that has
the least resistance.

Other important algorithms include total variation [5, 8, 9],
where the noise removal is cast as a minimisation problem of the

integral of the gradients subject to the resultant that the noise free
image is close to the original and that the noise is within a given
standard divination. On the other hand, in bilateral filtering [4, 7,
10], unique filters are designed for each image pixel where both
the spatial location of the pixels and the differences are taken into
consideration.

Previously, the authors in [1–3], proposed an anisotropic dif-
fusion method that is based on the constraint that image gradients
should decrease in smoothing and any increase in gradients is due
to edges. The main idea of this algorithm is that diffusion is per-
mitted in directions that do not cause an increase in the derivative
of the image, e.g. smoothing in the north direction is allowed
only if it results in decreasing differences in the south, east and
west directions.

In this paper, we apply the idea from [1–3] to synthetic three
dimensional data with different types of added noise. We consider
a given pixel and its twenty-six neighbours. We then examine the
change in the derivatives when the pixel is averaged with a given
neighbouring value. If the change is within an acceptable noise
level, we permit diffusion. Otherwise diffusion is prohibited.

Our results show that the method removes noise if we choose
the parameter that controls the diffusion carefully. This parameter
was determined theoretically. Experiments show that the theoretic
value of lambda was correct, by comparing two cases:

• First we used a parameter that was tuned to remove noise in
regions with approximately uniform data values. The exper-
iments did well in removing the noise in these regions, but
failed in regions with sufficiently large gradients.

• Secondly we used a parameter that was made to remove
noise in regions with relatively large gradients.

As expected from the theory, we saw that the noise in the high
gradient areas was reduced in the second experiment and not in
the first experiment. Our data was synthetic with added Gaussian
and speckle noise.

The diffusion algorithm
The proposed algorithm is iterative where a data set is fil-

tered in time and space. Without any constraints on the diffusion,
the process will give a blurred dataset and all the intensity values
will converge to their average. In earlier methods, there are many
constraints that have the common aim of reducing the diffusion
in directions of high gradients. Hence the idea is to preserve high
gradients.

Our idea is the opposite. When a sharp difference is re-
moved, some neighbouring gradients will increase and it is this
increase which we prohibit. We consider the directional differ-
ences in 26 directions and how these are changed by diffusion in
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Figure 1. The 26 closest neighbours and the directions of diffusion and
derivative.

each of the directions. Let us consider a pixel location and diffu-
sion from its 26 neighbours as shown in Figure 1. We denote the
26 directions by the numbers 1 to 26. The directional differences
are di = Ii − I0, where i = 1,2, . . . ,26 and I0 is the centre pixel.
We will consider the 26 diffusion from I j, where j = 1,2, . . .26
to I0. These are test diffusions and we consider them separately.
Diffusion along direction j = 1,2, . . .26 gives the new value of
the centre pixel I′0 = sI j + (1− s)I0, where s ∈ (0,1) is the test
diffusion factor. The 26 directional differences have changed to
d′

i = Ii − I′0 = di − sd j .

Condition. We will not allow a diffusion in direction j =
1,2, . . . ,26 if there is one direction i with

d′
i
2 −di

2

s
> λ , (1)

where λ > 0 is a small number.

We replace d′i with di − sd j in the inequality and rear-
range (1) to the equivalent form sd j

2 −λ > 2did j The condition
for allowing a diffusion in direction j is therefore that sd j

2 −λ ≤
mini{2did j}. If d j = 0, the condition is satisfied since λ is posi-
tive. The two other possibilities d j < 0 and d j > 0 split the con-
dition into two parts.

0 0.1−0.1
0

−0.1

0.1

d j

maxi{di}

mini{di}

Figure 2. If dj > 0, diffusion is allowed in the direction j, if the point
(dj ,mini di) lies in the dark grey area. If dj < 0, then (dj ,maxi di) must be
found in the light grey area. The parameters are s = 0.1 and λ = 10−3.

Theorem 1. The condition above is equivalent to the following:

diffusion from Ij to I0 is not allowed if

sd j −λ/d j ≤ 2min
i
{di} for d j > 0 (2)

sd j −λ/d j ≥ 2max
i
{di} for d j < 0. (3)

Corollary. The condition for diffusion is equivalent
to allowing diffusion in the j-direction if and only
if maxi{di}d j/s −

√
λ/s+(maxi{di})2/s2 ≤ d j ≤

mini{di}d j/s+
√

λ/s+(mini{di})2/s2

Proof. We solve the inequalities (2) and (3): d j ≤
mini{di}d j/s +

√
λ/s+(mini{di})2/s2 d j ≤ maxi{di}d j/s −√

λ/s+(maxi{di})2/s2,

The light grey area in figure 2 shows the condition on d j for
allowing diffusion in the direction j when d j < 0. The dark grey
area in figure 2 shows the condition on d j for allowing diffusion
in the direction j when d j > 0.

Theorem 2. If mini di = −
√

λ/(2+ s) and maxi di =√
λ/(2+ s), then the condition in (1) is satisfied for all

directions and we have ordinary diffusion.

Proof. The dashed line in Figure 2 is the curve given by the equa-
tion d j = −mini di and equivalently the curve d j = −maxi di.

These intersection points have values d j =±
√

λ
2+s .

The theorem guarantees that we have diffusion in all direc-
tions when mini di and maxi di are the abscissa of the intersection
between the curves and the dashed line in Figure (2). Theorem 2
can be used to give a value of λ so that we get an effective smooth-
ing in areas where the original had a zero gradient.

In practice, there will be noise in areas with a gradient and
we would like to remove that as well. In other words, we wish to
smooth along a direction where |d j| < σ when maxi di < M and
mini di > −M. That is, we need to find a value for λ so that the
points ±(−M,σ) are on the curves in Figure 2. Namely,

sσ −λ/σ =−2M.

We solve this for λ .

Theorem 3. When λ = sσ2 +2σM, then the method will smooth
in directions j where |d j| < σ in points with maxi di < M and
mini di >−M.

Experiments
Correct value of λ

We ran the algorithm on test data with three types of added
noise.

• Gaussian noise with standard deviation 0.05 was added to
the synthetic data. The result for the Gaussian noise experi-
ment is shown in Figure 4.

• Speckle noise with variance 0.052 was added to the syn-
thetic data. The result for the Speckle noise experiment is
shown in Figure 5.

• We added salt and pepper noise with volume density
1/1000. The result for the Speckle noise experiment is
shown in Figure 6.
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With standard deviation σ = 0.05, we calculate λ by using
theorem 2. We use the value λ = (2+ s)σ2 = 0.0055. This value
of λ will give diffusion in all directions in areas where the original
data has uniform shading. For maximum gradient M = 0.20 and
σ = 0.05, Theorem 3 gives the ideal value λ = +sσ2 + 2Mσ ≈
0.02 for the threshold λ .

Running the experiment on the synthetic data.
The experiment was run with the values s = 0.1, λ ∈

{0.02,0.0055} with 5, 10 and 20 iterations for the data with Gaus-
sian and speckle noise. We used λ = 0.0055 and s = 0.1 with 20
iterations for the data with added salt and pepper noise.

Experiment on MRI.
We ran our algorithm on an MRI data-set for a macaque

monkey head, (Figure 6(a)). The data was produced by De Castro
et al. [6]. We ran the algorithm with λ = 10−4 and λ = 10−5.
Figure 6 show the result after 10, 25,

Results
Salt&Pepper

The experiments using salt and pepper noise show that iso-
lated dots are removed easily as shown in Figure 5. However,
connected dots are not removed at all. The explanation for
this is simple: for isolated white points the pairs (d j,mini di)
are in the third quadrant in Figure 2, for connected white dots,
(d j,mini di) = (d j,0) lies at the ordinate axis in Figure 2.

Removal of Gaussian and Speckle noise
Figure 3 shows that the algorithm removed the Gaussian and

Speckle Noise that we added to the synthetic data. The algorithm
ran with 5, 10 and 20 iterations. There is a slight difference be-
tween the results for λ = 0.02 and λ = 0.0055. The images (c) to
(h) in Figure 3 and 4 show that the noise is removed effectively in
areas with no gradient for both values of λ . In regions with a gra-
dient in the original, the images (f) to (h) shows a slightly better
result for λ = 0.02 compared to λ = 0.0055. This is consistent
with Theorem 2 and Theorem 3.

The Macaque Monkey MRI test.
Figure 6 shows that our algorithm removes noise without re-

moving details and edges.

Conclusion
The method is effective in reducing the added Gaussian and

Speckle noise from the data. The algorithm removes both Pep-
per and salt grains in the picture effectively as long as the grains
are isolated. Two neighbouring salt grains are preserved by the
method. The method interprets two neighbouring grains as a short
edge.

Although the data in this paper are monochromatic MRI
scans, the method will also work on for multichannel 3D data,
such as movies where the third dimension is time. Our method
can also be used in smoothing multi spectral images by viewing
these as three dimensional data.

Synthetic test data
A function I(x,y,z) was created to replace real MRI data.

The synthetic data offer control over the performance of the algo-

rithm. The data was produced by the following function:

f (x,y,z) = cos4 2

√

r+
(

sin
x
4
+

3
2

sin
y
4
+3sin

z
4

)

This function makes non-uniform shells with gradient surfaces.
This picture is modified by successively inverting the image in
three random chosen affine half spaces given by: ni · (x−pi)> 0,
where

n1 = (−0.567140,−0.100444,−0.236113),
n2 = (−0.615264,0.992138,−0.732168), and
n3 = (−0.547542,0.074655,0.638890)

are normal vectors of the respective affine planes and

p1 = (74,65,54),
p2 = (245,205,108), and
p3 = (174,180,77)

are points in the respective affine planes.
We let x,y ∈ {1,2, . . . ,256} and z ∈ {1,2, . . . ,128}. The

number r is the distance from (x,y,z) to the centre (128,128,64)
of the image.

In the experiment we added different types of noise to the
synthetic data and ran the algorithm on the data. The data pro-
duced was smoothed with a filter with a Gaussian smoothing ker-
nel with standard deviation σ = 0.75 to avoid anti aliasing.

References
[1] Ali Alsam and Hans Jakob Rivertz. Fast edge preserving

smoothing algorithm. In Proceedings of the 13th IASTED
International Conference on Signal and Image Processing,
pages 8–12. ACTA Press, 2011.

[2] Ali Alsam and Hans Jakob Rivertz. Color edge preserving
smoothing. In Advances in Visual Computing, 9th Interna-
tional Symposium, ISVC 2013, pages 79–86. Springer-Verlag
Berlin Heidelberg, 2013.

[3] Ali Alsam and Hans Jakob Rivertz. Improved color edge pre-
serving smoothing. In Norsk Informatikkonferanse, 2019.

[4] Danny Barash. Bilateral filtering and anisotropic diffusion:
Towards a unified viewpoint. In In Third International Con-
ference on ScaleSpace and Morphology, pages 273–280,
2000.

[5] Peter Blomgren and Tony F. Chan. Color tv: Total variation
methods for restoration of vector valued images. IEEE Trans.
Image Processing, 7:304–309, 1996.

[6] V. De Castro, A.T. Smith, A.L. Beer, C. Leguen, N. Vayssière,
Y. Héjja-Brichard, P. Audurier, B.R. Cottereau, and J.B. Du-
rand. Connectivity of the Cingulate Sulcus Visual Area
(CSv) in Macaque Monkeys. In Cerebral Cortex, volume 31,
pages 1347–1364, 2020.

[7] Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo
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(a) Original image (b) Added Gaussian noise

(c) 5 iterations with λ = 0.0055 (d) 10 iterations with λ = 0.0055 (e) 20 iterations with λ = 0.0055

(f) 5 iterations with λ = 0.02 (g) 10 iterations with λ = 0.02 (h) 20 iterations with λ = 0.02

Figure 3. Adding and removing Gaussian noise from the synthetic data. The original image is processed with 5, 10, and 20 iterations respectively. λ is set to
0.0055 and 0.02.
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(a) Original image (b) Added speckle noise

(c) 5 iterations with λ = 0.0055 (d) 10 iterations with λ = 0.0055 (e) 20 iterations with λ = 0.0055

(f) 5 iterations with λ = 0.02 (g) 10 iterations with λ = 0.02 (h) 20 iterations with λ = 0.02

Figure 4. Adding and removing Speckle noise from the example data. The original image is processed with 5, 10, and 20 iterations respectively. λ is set to
0.0055 and 0.02.

(a) Original image (b) Added Salt&Pepper noise (c) Salt&Pepper 20 iterations

Figure 5. Adding and removing Salt&Pepper noise from the synthetic data. The image is processed with 20 iterations respectively. λ is set to 0.0055.
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(a) Original MRI image

(b) λ = 10−4, n = 10 (c) λ = 10−4, n = 25

(d) λ = 10−5, n = 10 (e) λ = 10−5, n = 25

(f) λ = 10−5, n = 100
Figure 6. The algorithm is applied on MRI-data of a Monkey. λ is set to 1.0e−4 and 1.0e−5. The algorithm ran with 10, 25 and 100 iterations.
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