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Abstract
Some natural scenes show a reduced set of colors. These

scenes are often encountered in space imaging, for instance for
ocean observation which deals with hues of blue and for Mars
exploration which deals with hues of ”yellowish-brown”. In this
context the interest of performing hue-specific (or scene-specific)
color corrections for the reconstruction of these images is tested.
The study is performed on the Next Generation Target (Avian
Rochester, LLC - 130 color patches) for both the color correction
matrix computation and efficiency testing. The results show that
such hue-specific corrections are efficient on the hues of interest,
and evaluate the impact on subsidiary hues.

Introduction
In the reconstruction pipeline of raw images, color correc-

tion stage aims to transform the image’s colors from the device-
dependent RGB color space to a device-independent XYZ color
space based on the Human Visual System (HVS). HVS and Dig-
ital Imaging System (DIS) color perceptions differ one from an-
other due to the spectral differences between the Color Matching
Functions (CMFs) and the sensitivities of the considered DIS pix-
els. This is mainly due to practical reasons [1] and leads to a
non-compliance with the Maxwell-Ives-Luther criterion. There-
fore many computer vision applications require a color transfor-
mation in order to optimize the faithfulness of the reproduced col-
ors as well as the interpretation of the images. Usual methods are
based on the use of a calibration target and optimize the correction
for the full visible spectrum. Extensions of such methods toward
a reduced target or no target at all, are currently investigated for
applications such as spatial imaging where the payload (on the
satellite or on the rover) is limited (by the rocket transportation)
[2]. Other methods from cultural heritage suggest to profile cam-
eras spaces in the hue space they will work with [3][4], allowing
an efficiency of the derived color correction which is therefore
linked to the colorimetric characteristics of the calibration target.
From [3], ”it follows that it is desirable to construct a profile using
a calibration target with similar colorimetry to the subject of the
imaging”. This work focuses on particular applications for which
the scenes present colors from a restricted part of the visible spec-
trum: hues of ”yellowish-brown” [5] on Mars [6] or in medical
imaging [7], hues of green for military camouflage in a forest or
agronomy [8], hues of blue underwater with natural light [9] and,
hues of green and blue for Earth observation.

Such scenes result either from the incident illuminant which
constraints the perception of the objects colors (under-water), ei-
ther because the objects actually present reflectances arising as
minor variations of a single hue (camouflage), or a mix of both

(Mars). This study investigates the efficiency of hue-specific color
corrections computed through Linear Least Square Optimization
(LLSO). The first part of this paper describes the study details
comprising the selection method of the hue-specific training data
for the LLSO. The results are featured in the second part and a
discussion suggesting future works is given in the last part.

Method
Spectral sensitivities of any camera are different from hu-

man eyes Color Matching Functions (CMFs - considered standard
or individual [10]) for practical reasons linked to signal-to-noise
(SNR) considerations [11][12]. A colorimetrical camera is de-
scribed by its ability to sense the colors of a scene as a human
would do it. As expressed by the Maxwell-Ives-Luther criteria
[1] the colorimetrical capacity of any camera is linked to the de-
gree of linear combination between the camera spectral sensitiv-
ities and the CMFs. Figure 1 shows one basic raw-RGB image
reconstruction pipeline which is the one used in this study. It al-
lows to convert raw-RGB values from the device-dependent color
space to a device-independent color space able to be displayed,
here sRGB. In this work, as depicted on Figure 1, the stages of
the pipeline are the following :

• The raw image (flattened and relieved from dark noise) is
demosaicked through Malvar [13] algorithm.

• A normalization is performed in order to reach Hunt’ [14]
colorimetric color reproduction (”equal chromaticities and
relative luminance”).

• A first color correction (CCM1) is applied in order to convert
the image to the standard CIEXYZ color space. At that stage
color differences formulaes can be applied and quantify how
much colorimetric is the camera under study.

• A chromatic adaptation is applied if necessary as well as
a second color correction (CCM2) in order to convert the
image to the sRGB displayable color space.

This study focuses on the computation of CCM1 in order to
optimize color correction from R,G and B to X,Y and Z for a par-
ticular restricted part of the visible spectrum. This is done through
the basic Linear Least Squares (LLS) minimization. Thus, for a
number n of training data provided by the Next Generation Tar-
get (NGT - Figure 2), the matrix M linked to CCM1 is computed
through LLS approximation such that :

T = M×C (1)
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Figure 1: Image reconstruction pipeline of raw rgb images.

T =

X1 ... Xn
Y1 ... Yn
Z1 ... Zn

 (2)

C =

R1 ... Rn
G1 ... Gn
B1 ... Bn

 (3)

argminM(||T −MC||2) (4)

MT = (CCT )−1CT T (5)

with T the matrix containing the X,Y,Z expected values and
C the matrix containing the R,G,B raw values to be transformed.

Figure 2: Next Generation Target (NGT) from Avian Rochester
(https://www.avianrochester.com/nextgentarget.
php), LLC. The 24 centered patches are the same as in Col-
orChecker Classic from X-rite.

Hue selection

X,Y,Z theoretical values of the NGT (Figure 2) under
D65 illuminant and CIE1931 standard observer are converted to
CIEL*a*b* color space describing in a more accurate way the
uniform human vision. Thus 130 points are depicted in Fig-
ure 3 with the a* and b* coordinates of each patches of the
NGT under D65 illuminant. This representation shows princi-
pal axes along seven directions, shown by the lines on Figure
3. It leads to the hue selection performed in this study, i.e the
patches on a line are used together to compute the correspond-
ing hue-specific CCM1 through eq. 5. This method therefore
allows computation of green-, yellow-, pink-, purple-, king blue-
, sky blue-, and turquoise-, specific color corrections. Follow-
ing strictly this method, computation of red-specific and orange-
specific corrections are not possible because the patches on the
NGT do not form any line. Therefore an exception as been made
and the Red/Orange- specific color correction was done selecting
the patches in the ellipse from Figure 3. The number of patches
in each selection is given in Table 1.

Selection name Number of patches (n)

All 130
Classic 24
Yellow 9
Green 15

BlueKing 15
Turquoise 11
BlueSky 9
Purple 9
Pink 11

Red/Orange 7
Table 1: Number of patches in each selection.

30th Color and Imaging Conference Final Program and Proceedings 97

https://www.avianrochester.com/nextgentarget.php
https://www.avianrochester.com/nextgentarget.php


-100 -50 0 50 100
a*

-100

-50

0

50

100

b
*

Yellow
Red/Orange

Pink

Purple
BlueKingBlueSky

Turquoise

Green

Figure 3: Hue selection performed for the training data used for
CCM1 computation.

Test on simulations

In order to fill C matrix, R,G and B values can be obtained
through equations 6, 7 and 8 from I(λ ) the spectral power distri-
bution of the illuminant (here D65), R(λ ) the reflectance of the
NGT patches, and SR,G,B(λ ) the spectral sensivities of the camera
(selecting patches as previously explained).

R =
∫

390−730nm
R(λ )× I(λ )×SR(λ )×dλ (6)

G =
∫

390−730nm
R(λ )× I(λ )×SG(λ )×dλ (7)

B =
∫

390−730nm
R(λ )× I(λ )×SB(λ )×dλ (8)

For statistics this has been done for a dataset of
60 cameras spectral sensitivities issued from Image En-
gineering (https://www.image-engineering.de/library/
data-and-tools) which are shown on Figure 4. This simula-
tion of R,G,B raw values allows the evaluation of the efficiency of
hue-specific color correction for any camera spectral sensitivities
dataset.
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Figure 4: Relative spectral sensitivities dataset used in this study.

Evaluation method
The efficiency of the specific CCMs are tested on NG tar-

get simulated images and compared to global CCMs optimized
for the full NGT or for the 24 central patches. In each case and
for each patch i=1,...,n the error ∆E2000 [15] between the cor-
rected test image and the scene colorimetry X,Y,Z is computed.
The mean over n=130 patches of the NGT (eq. 9) is given when
consistent, as well as the mean over n=24 central patches and the
mean over n patches from the hue selection i.e through lines and
ellipse on Figure 3 (eq. 10):

errorglobal =
1
k
×

k

∑
i=1

∆E2000(testi,scenei) (9)

with k = 24 or 130.

errorselection =
1
n
×

n

∑
i=1

∆E2000(testi,scenei) (10)

The hue-specific corrections are tested on the hue of interest
and on other hues (considered of secondary interest for the partic-
ular use of the images corrected through the proposed method).

Results and Discussions
R,G,B simulated raw values are computed from equations 6,

7 and 8 for 60 sensors showing different relative spectral sensi-
tivities (Figure 4). Then hue-specific and global corrections have
been computed and applied to these R,G,B values. The general
results are shown in Figure 5. Grey dots depict global errors (eq.
9) corresponding to the application of each hue-specific correc-
tion, and the red triangles show the specific error (eq. 10) i.e the
mean of errors through the selected hues only (those for which
the correction has been specified). The error bars show vari-
ability through the whole 60 cameras dataset. All red triangles
for Yellow-, Green-, BlueKing-, Turquoise-, BlueSky-, Purple-,
Pink-, and Red/Orange- specific correction are under the correc-
tions dedicated to the whole NGT (’All’) or to the 24 ’Classic’
patches. It shows that for each hue, the specific correction is more
efficient than a global correction (either computed on 130 or on
24 patches) and that residual specific errors after correction reach
values close to 1∆E2000. The grey dots allow to envision how the
other hues are altered by a hue-specific correction non dedicated
to them. Green- and Pink- specific corrections seem to work re-
ally well for all hues as shown by the grey dots, close to 2∆E2000,
for these specific corrections. This is true for all cameras as il-
lustrated by the short error bars. On the other hand, BlueSky-
and Turquoise- specific corrections must show very important er-
rors on secondary hues because the global errors are high around
or above 6∆E2000 with Turquoise- specific results showing the
largest error bar. These results, either for hue-specific correc-
tions that work really well or for others, suggest to look at resid-
ual errors for each of the 130 patches individually which is done
through the 1st columns of Figures 6 and 7.

Each colored dot represents the individual residual error of the
indicated color patch of the NG target after the correction identi-
fied in the title of the corresponding graphic (either ’All’, ’Clas-
sic’, ’Yellow’, ’Green’, etc). In the second and third columns of
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Figure 5: Mean error after each hue-specific correction, in
∆E2000 units. Grey dots are global errors, red triangles are er-
rors on specific hues. Error bars show the variability through the
whole 60 cameras dataset.

Figures 6 and 7 CIELab and CIExy color space are depicted re-
spectively. In both, circles are the coordinates of patches selected
to compute the correction, and triangles are the coordinates of
patches showing the 25% worst errors through the corresponding
correction. Concerning Green- and Pink- corrections, the hypoth-
esis is done that their strong efficiencies is linked to the larger
area occupied by the selected patches in CIExy. Indeed, as for
the Red/Orange- selection, xy-coordinates of the patches shape
more than a simple line in CIExy which is linearly linked to the
coordinates XYZ used for the correction computation. Looking
again at BlueSky- and Turquoise- specific corrections results, it
appears that for a few patches (which are hues of second interest)
the residual errors are above 40∆E2000 units. Representations in
CIELab and CIExy are depicted in order to potentially find a path
toward explanations on why some hue-specific corrections alter
more the secondary hues than other hue-specific corrections. The
area the patches coordinates occupy might be a path toward an
explanation and/or it could be linked to the relative orientations
(in CIELab and/or CIExy) between coordinates of the selected
patches compared to those of the most alterate patches. To the
authors, it is not clear yet from these results. Futur investigations
comprise the use of these results in order to refine the hue selec-
tions adding, for each, the worst error patches. It also comprises,
other selection methods inspired from [16] and [17]. A qualita-
tive result of the corrections derived in this study is given through
Figure 8 which is a simulated Classic (24 patches) target divided
in 4 parts showing results of different color corrections applied to
the pixel responses of a camera (the 60th) of the QE dataset.

Conclusion
Hue specific corrections are of interest for scenes that show a

reduced set of colors. It reduces the residual error after color cor-
rection around 1∆E2000. Therefore some subsidiary hues may
be considerably alterate. This is the case when BlueSky- and
Turquoise-, specific corrections are applied leading to residual er-
rors around 40∆E2000 for blue and/or pink patches. In contrast,
some corrections such as Pink-specific or Green-specific don’t
show particularly high residual errors on any patches. Investi-

gations are conducted in order to give an explanation.
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Figure 6: First column : individual (per patch of the NG target) errors after each hue-specific correction (rows of the figure), in ∆E2000
units. Error bars show the variability through the whole 60 cameras dataset. Second column : patches coordinates in CIExy color space
(colored representation is only for readiness sake, not a real meaning). Third column : patches coordinates in CIELab color space. For the
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Figure 7: First column : individual (per patch of the NG target) errors after each hue-specific correction (rows of the figure), in ∆E2000
units. Error bars show the variability through the whole 60 cameras dataset. Second column : patches coordinates in CIExy color space
(colored representation is only for readiness sake, not a real meaning). Third column : patches coordinates in CIELab color space. For the
last both, circles are the coordinates of patches selected to compute the correction, and triangles are the coordinates of patches showing
the 25% worst errors through the corresponding correction
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Figure 8: Simulated Classic target showing the results of different
corrections. Top left : groundtruth. Top right : correction com-
puted on the 130 NGT patches. Bottom left : correction computed
on BlueSky selection. Bottom right : no correction.
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