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Abstract

A basic requirement in any electronic imaging system,
is the ability to interpolate image data by resampling the
scanned input image. This is particularly true when work-
ing with relatively low resolution images on a desktop
system, for output on a high resolution color transpar-
ency film recorder such as the LightJet 2000.

A major problem with any interpolation algorithm
which produces a sharp result is that the optimum sharp-
ness of the resultant image is dependent on local image
content. The sharpness of the interpolated image therefore
needs to be altered depending on local image content.

We are proposing a method which provides a con-
tinuum of interpolated images from relatively sharp at
one end to relatively smooth at the other end. A user has
the ability to select any degree of sharpness or smooth-
ness in the interpolated output image, within the limits
of the full sharpness and full smoothness results. In ad-
dition, a user can specify sharpness depending on local
image contrast and density.

Introduction

This paper describes a method of adaptively processing a
digital input image into an interpolated digital output im-
age, by a method which depends on local image content.

Interpolation to produce a sharp resultant image can
be obtained by fitting a cubic or higher polynomial to
the input image data. A preferable method of producing
a better visual sharp result is to use a digital filter de-
sign to obtain weighting coefficients for the input image
data, as described in the Overview of Filter Design sec-
tion. However any interpolation algorithm which pro-
duces a sharp result suffers from two major potential
problems:

a)  Objectionable ‘ringing’, overshoot and under-
shoot will occur on high contrast edges in the image.
Some degree of overshoot and undershoot is required
on lower contrast edges to produce a visually pleasing
result, but this will produce objectionable ‘ringing’ on a
high contrast edge. Thus a method of adapting the inter-
polation algorithm depending on local image contrast is
required.

b)  The enhancement of unwanted image content
such as noise in the shadows due to film grain. Once
again some sharpening is required in highlight and
midtone areas to produce a visually pleasing result, but
this can lead to objectionable graininess in the shadows,
and a method of adapting the interpolation algorithm
depending on local image density is required.

Methods by which different interpolation algorithms
can be used during an interpolation process have been
suggested. For example, Fujita et al1  suggest a method
of manually switching between different interpolation
algorithms depending on the kind of image to be inter-
polated. Van Nostrand2  describes a method of automati-
cally switching interpolation algorithm depending on
local image content. With this method, certain correc-
tive measures need to be taken in order to compensate
for a sudden switch.

We are proposing a method which provides a con-
tinuum of interpolated images from relatively sharp at one
end to relatively smooth at the other end. A user has the
ability to select any degree of sharpness or smoothness in
the interpolated output image, within the limits of the full
sharpness and full smoothness results. In addition, a user
can specify sharpness depending on local image contrast
and density. The amount of overshoot or ‘white fringe’
can be controlled separately from undershoot or ‘black
fringe’. Each color can also be controlled separately, if
for example the blue channel is the noisiest more smooth-
ing could be applied to the blue channel.

Implementation

For each output pixel, four values are calculated
1) a sharp resultant pixel - P

sharp
2) a smooth resultant pixel - P

smooth
3) local image contrast - C (scaled between -1 and 1)
4) local image density - D (scaled between 0 and 1)

which are then mixed as shown in Figure 1.
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are controlled by the user creating look-up
tables for the required sharpness as shown in Figure 2
and Figure 3. In Figure 2, a table for smoothing at high
contrast and sharpening at medium and low contrast is
illustrated. In Figure 3, a table for smoothing at high
density and sharpening at medium and low density is
shown.

For the sharp result, the adaptive algorithm dictates
that we enhance the image as we interpolate, that is, the
pixels are interpolated and sharpened simultaneously.  Most
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enhanced to allow design of even order filters and contour
preshaping to allow interpolation in the spatial domain.  It
can be shown that a zero-phase circularly symmetric fre-
quency response will produce zero-phase circularly sym-
metric spatial coefficients.  The filter coefficient matrix is
then subsampled and convolved as required to give the
desired interpolated and enhanced image output pixel.

Overview of Filter Design

The frequency transformation method described by Lim
works well for our application (please see reference 3
for a detailed discussion).  The use of  zero phase filter-
ing minimizes phase distortion in the interpolated im-
age by preserving the positioning of different spectral
components in the passband and the transisitonal bands.
A circularly symmetric frequency response eliminates
directional amplitude biasing in the frequency domain,
and circularly symmetric coefficients can lead to less
mathematical computation with filter implementation.
The frequency transformation method generates a 2D
frequency response that is increasingly circularly sym-
metric as ω decreases.  This is particularly useful in de-
signing filters with low cutoff frequencies such as our
application requires.

The basic idea of frequency transformation is shown
in Figure 4.  The process begins with the design of a
zero phase 1D FIR filter prototype which represents a
1D view of the desired 2D response.  We chose the
McClellan-Parks FIR digital filter design algorithm be-
cause of the simplicity involved in specifying an arbi-
trary magnitude frequency response.  Although the linear
phase filter algorithm generates coefficients for a causal
filter, a shift in index by (N-1)/2, N odd, gives coeffi-
cients for a zero phase frequency response.

Figure 1.  Mixing of Sharp and Smooth Pixels

Figure 2.  Sharpness versus Contrast

Figure 3.  Sharpness versus Density

spatial interpolation schemes such as those based on bi-
cubic, bilinear and polynomial methods are either low pass
by nature(as a result of averaging) or produce minimal
sharpening and contrast enhancement.  A new spatial inter-
polation method was developed based on design in the fre-
quency domain. This method produces zero-phase,
approximately  circularly symmetric, even or odd order two
dimensional (2D) filters.  The scheme is a frequency trans-
formation method described by Lim that was modified and
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Figure 4.  Frequency Transformation Implementation

H(ω) as required for the McClellan Transformation.
In short, these 1D coefficients h(n) are transformed into
2D space as

H(ω
1
, ω

2
) = H(ω)

cosω=Τ(ω1, ω2)  where

H(ω) = h(0) = Σn 2h(n)*cosωn, 1≤n≤(N-1)/2, N odd

Τ(ω1, ω2) = 0.5(cosω1 + cosω2 + cosω1ω2−1)
(McClellan transformation)

-π≤ω≤π 1D frequency
-π≤ω1≤π, -π≤ω2≤π 2D frequency

H(ω
1
, ω

2
) is the desired circularly symmetric zero

phase 2D frequency response.  The 2D filter coefficients
h(n

1
, n

2
) are then obtained by a 2D inverse DFT taken

symmetrically about ω
1
 , ω

2
 = 0.

This method was presented for N odd.  Since physi-
cal memory is generally available in powers of 2, coef-
ficient access and address indexing is easier to
accomplish  for N even.  The above algorithm was modi-
fied to allow N even by introducing phase shifts corre-
sponding to 1/2 sample in all equations and modifying
the expression for H(ω) appropriately.  The symmetric
IDFT must also be shifted about ω

1
 , ω

2
 = 0 by 1/2 sample

to give real zero phase coefficients.

Interpolation Filtering

One way of interpolating a 1D bandlimited sequence x(n)
by I, an integer, is to insert I-1 zeros between samples of
x(n) to form a new sequence s(r) with fourier transform
S(ejωT/I) = X(ejωT), where T is the original sampling pe-
riod4.  Now, if this new sequence is filtered with an ideal
rectangular low pass filter with cutoff at ω

0
 = π / T, the

output will be a scaled and interpolated version of the
input sequence.  For T = I*T

1  
where T

1 
 is the new

(shorter) sampling period, the cutoff frequency is at ω
0

= π / I*T
1
.  But for any sampling frequency ω

s1
, ω

nyq
 = π

/ T
1
, so ω

0
 =  ω

nyq
 / I.  If we normalize with respect to ω

s1
by setting ω

s1
 = 1, and given that  ω

nyq
 =  ω

s1
 / 2, then ω

no
=  .5 / I.  This establishes the ideal cutoff frequency for
the interpolation filter.  Assuming ideal filtering and
bandlimiting, the Fourier transform of the (I*N-1) point
output sequence in the region ω ≤ π  / T

  
is identical to

that of the Fourier transform of the (N-1) point input
sequence in the region ω ≤ π  / T.

This argument can be extended to include 2D fil-
ters.  Using frequency transformation, however, it is
much simpler to specify the interpolation filter cutoff as
part of the 1D filter design, then apply the 1D to 2D
transformation to generate a 2D interpolation filter ca-
pable of spatial interpolation.

Filter Requirements

A versatile image interpolating system will support a va-
riety of interpolation factors.  Each factor may demand a
separate interpolating filter design.  For large factors, com-
putation of the 2D filter coefficients is very time consum-
ing; therefore, it is more convenient to design one filter
that can handle all interpolation factors.  One way to ac-
complish this is to design the 2D filter for maximum in-
terpolation, then decimate the 2D filter coefficients
appropriately.  With similar arguments and assumptions
used above for interpolating filters, decimating by factor
D of a sequence bandlimited to ω

no
 =  .5 / D (normalized)

will give a scaled replica of the original Fourier trans-
form in the region ω

no
 ≤  .5.  Applying this to two dimen-

sions, an interpolating 2D filter designed for maximum
interpolation factor I

max
 can be decimated by D (in both

directions) to give a final interpolation factor of I
max

 / D.
Using this method, there is only one 2D filter design that
is subsampled and scaled appropriately to give the final
interpolation filter, and, the final interpolation factor I

max
/ D need not be an integer.

So far, interpolating 1D filters have been character-
ized as having magnitude = 1 for ω

no
 ≤  .5 / I and 0 other-

wise.  The restriction of bandwidth eliminates aliasing and
the constant passband magnitude preserves the original
frequency response in the interpolated one.  Altering the
passband magnitude, however, will in turn alter the inter-
polated frequency response.  To sharpen and  interpolate
the input image, the passband magnitude must be some
form of high pass filter at a minimum.  Since the desired
result is to sharpen the image, the passband magnitude is
contoured to pass the low frequency information but to
amplify or emphasize the higher frequencies as shown in
Figure 5. This tends to preserve overall brightness of the
image while sharpening.  The peak normalized frequency
and amplitude will determine the degree of sharpness.
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There are, however, two disadvantages to this approach.
One, we specify I

max
 = 256, which leads to a 1024 × 1024

point filter design.  The computational time for the
McClellan Transformation and the 2D - IDFT is exceed-
ing long for such a large filter.  Two, the main lobe of
the 2D coefficient array, symmetric about ω

1
 , ω

2
 = 0, is

very thin so that most of the coefficients throughout the
array are very small numbers relative to the central lobe.
From an intuitive point of view, it is more desireable to
have the energy more evenly spread over the coefficient
array.  Therefore, a more practical method is shown in
figure 6.

Starting with a β point 1D filter design, set  ω
no

 =  .5
/  (β/4).  β must be large enough for the FIR filter design
to render sufficient detail with the sharpening magni-
tude response, but small enough to limit computational
time and maintain a large central lobe in the spatial fil-
ter coefficient array.  β < 75 works well.  Next, com-
plete the frequency transformation.  The result here is a
β × β point image sharpening filter coefficient array with
cutoff at ω

no1
 , ω

no2
 = .5 / (β/4) designed for maximum

interpolation β.  To get the final 1024 × 1024 point unit
step response for I

max
 = 256, interpolate in both direc-

tions by I
max

 / β.  Assuming that the β × β point image

Figure 7. Magnitude Response of a 32x32 point spatioal filter pre-designed for interpolation

Figure 6. Practical Frequency Transformation of Interpolation Filters

Figure 5. Magnitude Response of a 32 poiint FIR filter pre-
designed for interpolation.

Filter Implementation

The real time sharpening interpolator is realized as a 4×4
convolution of the input image with the pre-designed
seed interpolator decimated by D to give the final inter-
polation factor I = I

max
 / D.  To generate the seed interpo-

lator at I = I
max

 , the cutoff frequency is placed at ω
no

 ≤
.5 / I

max
.  The resulting 2D filter size is then 4I × 4I.  For

I = 1(no interpolation), the filter will be decimated by
I

max
.  The seed interpolator can be designed from a 4I

point 1D filter then transformed to two dimensions.
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Figure 8. Spatial interpolating filter coeffeicients for the filter of Figure 7

filter is truly bandlimited as required for interpolation,
the result will be a 1024 × 1024 point image sharpening
filter with cutoff at ω

no1
 , ω

no2
 = .5 / (I

max
 / 4).  This filter

serves as the seed interpolator.  Since the β × β point
coefficients were interpolated to generate the seed in-
terpolator, the relative size of the central lobe remains
the same, but the frequency response and cutoff fre-
quency have been shifted to allow a larger interpolation
factor as stated above.  The array can stored as a con-
stant, and on demand can easily be decimated to give
the final interpolation factor.

Figure 7 illustrates a simple example of a spatial
sharpening filter designed for interpolation by 4. The
design is based on the 1D prototype on Figure 5. Figure
8 is the final 32×32 spatial interpolating filter coeffi-
cient array.

For the smooth result, a similar method was used to
produce a low pass filter with no ringing, circular sym-
metry and zero phase distortion.

Hardware

The adaptive interpolation algorithm is computationally
intensive requiring more than 146 million 16 bit multi-
plies and 44 million adds per second. The memory band-
width required is on the order of hundreds of megabytes
per second.  Although a software solution is possible,
processing time for typical 3 or 4 color images could
take on the order of hours, whereas a hardware solution
produces an 8” by 10” image at a plotting resolution of
2000 lines per inch, i.e. 320 Mpixels with 36 bits/pixel
in 10 minutes.  The algorithm is implemented with sev-
eral 2D hardware convolvers, DSPs, and FPGAs for ad-
dress generation, control and other processing functions.

Sharp, smooth, contrast and density coefficients are
downloaded and stored in DRAM.

The adaptive interpolation algorithm is compu-
tationally intensive requiring more than 146 million 16
bit multiplies and 44 million adds per second. The
memory bandwidth required is on the order of hundreds
of megabytes per second.  Although a software solution
is possible, processing time for typical 3 or 4 color im-
ages could take on the order of hours, whereas a hard-
ware solution produces an 8” by 10” image at a plotting
resolution of 2000 lines per inch, i.e. 320 Mpixels with
36 bits/pixel in 10 minutes.  The algorithm is imple-
mented with several 2D hardware convolvers, DSPs, and
FPGAs for address generation, control and other pro-
cessing functions.  Sharp, smooth, contrast and density
coefficients are downloaded and stored in DRAM.

Conclusions

Adaptive interpolation works very successfully, avoid-
ing the limitations of any one fixed interpolation algo-
rithm which will always involve compromises . Two
common examples are:

a)  Sharp interpolation to obtain a pleasing image in
low to medium contrast areas can result in objection-
able ringing in high contrast areas. The only way to avoid
this problem is to adaptively change the interpolation
algorithm used to minimise the ringing in high contrast
areas, as shown in Figure 2.

b) Sharp interpolation to obtain a pleasing image at
low to medium density can result in enhancement of
shadow noise in high density areas.  By adaptively chang-
ing the interpolation algorithm from full sharpness at low
and medium density, to full smoothness at high density
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to reduce shadow noise,  as shown in Figure 3, a good
result can be obtained over the full tonal range.

An ASIC implementation is being investigated for
better performance at less than one quarter the cost.
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