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Abstract

We present a fast, color-based algorithm for recogniz-
ing objects viewed under an unknown illuminant. Ob-
jects are indexed by just three numbers: the angles of
the object’s color distribution. If R, G and B denote the
3 color bands of the image of an object (stretched out as
vectors) then the angular index comprises the 3 inter-
band angles (one per pair of vectors). In the general case
the distribution of colors, and in turn the angular index,
will depend on the color of the illuminant. If, however,
the original color bands are transformed by a sharpen-
ing transform2,3 before computing the distribution angles,
then we show that the angular index is illuminant inde-
pendent. Indexing using angles calculated post sharpen-
ing delivers excellent recognition for a variety of
illuminations.

 Introduction

Swain and Ballard10 developed an algorithm, called
color-indexing, which sets out to recognize objects us-
ing only color information; objects are represented by
color histograms (i.e. the distribution of colors present
in an object) and recognition proceeds by histogram
matching. Good recognition is possible since color his-
tograms are  very robust features of objects since they
are invariant to translation and rotation about the opti-
cal axis and change only slowly as a function of rotation
about other axes. Moreover color histograms are rela-
tively stable to object occlusion and changes of object
scale. However, the color histogram method breaks down
completely if illumination is allowed to vary since the
color histogram depends on the color of the light. Funt
and Finlayson4 have shown that by histogramming color
ratios taken between nearby image locations instead of
the raw colors, the histogram technique can be made in-
variant to changes in the illumination. This Color Con-
stant Color Indexing (CCCI) algorithm performs much
better than straight color indexing under an illuminant
change and almost equally well for a fixed illuminant.
However, it is computationally more expensive and it is
limited by the fact that ratios at low intensity levels can
become dominated by noise. A problem common to both
color-indexing and CCCI is that histograms are compared
a bin at a time which can be an expensive operation (typi-
cally a histogram has thousands of bins and comparison
requires thousands of operations).

More recently, Healey and Slater5 have used moment
invariants computed from color histograms for recogni-
tion in the presence of illumination changes. Their algo-
rithm is based on the assumption that when the
illumination changes the colors in an image shift by a
linear transform. When this assumption holds (in gen-
eral it does8) a linear transform must relate the color his-
tograms  of an object viewed under two different
illuminations. Taubin and Cooper11 have developed effi-
cient algorithms for the computation of invariants of
centralized moments; applied to color histograms, these
are invariant under an affine transformation. It follows
then that these invariants provide an illumination inde-
pendent index useful for color object recognition. More-
over, centralized moments  effectively circumvent the
ratio accuracy limitation of CCCI. Healey and Slater
demonstrate that a small set of 6 moment invariants sup-
ports good recognition when the object database is small.
Unfortunately centralized moments capture only a small
amount of the total information available in the histo-
gram; specifically all the low-frequency  information is
lost. We predict therefore that moment indexing will re-
turn poor performance for larger object sets. Results
corroborating this prediction are presented later.

The motivation for using moments is that colors shift
by a linear transform under a change in illumination.
While a linear model accurately describes illumination
change it is in fact too general a model since most linear
transforms  never occur in practice. In this paper,  we
model illumination change by a von Kries type model:
colors under different illuminants are related by a di-
agonal matrix. What this means is that under an illumi-
nation change every pixel within an image band is scaled
by a single von Kries coefficient. Based on this simpler
model of illumination change we propose a new index
for object recognition: the angles of the color distribu-
tions in an image.

An image band containing N pixels can be thought
of as an N-vector. Thus, it is immediate that under the
von Kries model  the length of each N-vector (or image
band) changes with illumination but its orientation re-
mains fixed. From this it follows that the angles between
the image-bands are independent of the illuminant.These
illumination-invariant angles comprise the angular in-
dex which we will use as our object descriptor. Because
the descriptor consists of just 3 numbers it promises very
efficient indexing. Moreover  most of the low-frequency
color information is preserved; from which it follows
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Tρ x ≈ TDρ x  (3)

where T denotes the sharpening transformation of the
original sensor response functions. Let W be a  3×N
matrix representing the set of sharpened sensor responses
for a 3 sensor imaging environment with N array ele-
ments.  We can then write

W ≈ DW  (4)

where W is the set of responses under a different illumi-
nation. We see from Eq. (4) that a change in illumina-
tion corresponds to a change in length for each of the
rows of W.  Upon normalizing the rows of W and W to
unit length, the diagonal matrix D in Eq. (4) reduces to
the identity matrix. It follows from the above that the
angles between the three N-dimensional row vectors are
invariant to changes in the illumination. Using subscripts
and superscripts to index row and columns respectively
then these angles are computed as
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descriptors. These can be computed with 3N multipli-
cations and 3N additions from the sharpened re-
sponses. This compares favorably with Healey and
Slater’s moment index which requires 21N  multipli-
cations to construct.

Experimental Results

To test distribution angle indexing we begin by generat-
ing a set of synthetic Mondrian images using human
cones13  and sharpened-cone responses3. A set of 21
Mondrians under five different illuminants6,13 (D48, D55,
D75, D100 and CIE standard A)  were generated. Each
Mondrian comprised between 4 and 10 reflectances ran-
domly drawn from the 24 Macbeth color checker chips9,
12 ceramic reflectances1 and 4 Krinov7 natural
reflectances. Images rendered under illuminant D55 were
used to create the model database of angle indices, and
the remaining 84 images were used to evaluate recogni-
tion performance. Matching is performed as follows:
first, the angle index is calculated for each test image
using Eq. (5) and second, each index is compared to those
in the model database. If the minimum Euclidean dis-
tance between the image angle index and the model da-
tabase occurs for the correct answer (i.e. the same
Mondrian under D55) then the ranking is 1; if the cor-
rect answer is the second smallest match then the rank-
ing is 2 and so on. The match rankings calculated for
entire test set are shown in Table 1.

With the sharpened responses all the images are per-
fectly matched to the database; whereas, with the cone

that object recognition on reasonably large data sets
should be possible.

We criticized the linear model by saying that it was
too powerful. Equally the von Kries model is widely
believed to be too simple; this is especially true for com-
putational models operating with human cone sensors12.
However recent work by Finlayson et al. has shown that
while a von Kries model may not be appropriate for the
original color image it will always be appropriate for a
sharpened color image which is created by taking a lin-
ear combination of the original color bands.

Angle Invariants

The light reflected from a surface depends on the spec-
tral properties of the surface reflectance and illumina-
tion incident on the surface. We will restrict our
discussion here to Lambertian surfaces. In an imaging
system, light reflected from a surface falls onto a planar
array of sensors in the camera. Each location x on the
array has  k classes of sensors. The value (ρx 

k
) at each

sensor output is given by the integral of its response func-
tion multiplied by the light and reflectance:

ρk
x = S x'

ω
∫ (λ )E x' (λ )Rk (λ )dλ (1)

where λ is the wavelength, Rk is the response function
of the kth sensor class, Ex’(λ) is the incident illumination
and Sx’(λ) is the surface reflectance function at location
x’ on the surface which is projected onto location x on
the sensor. We further assume here that the illumination
does not vary spectrally over the given surface, and so
drop the index x’ from E(λ).Under a von Kries model of
illumination change the sensor responses under two dif-
ferent illuminants are assumed to be related by a diago-
nal matrix.

ρ x ≈ Dρ x (2)

here ρ x  represents the k sensor outputs at location x on
the sensor array under a different illumination E(λ). The
diagonal matrix D contains the von Kries coefficients
taking sensor responses between illuminants. Note that
the same diagonal matrix D maps the entire image.

In practice the von Kries model will in general only
approximately account for a changing illuminant and the
relationship in Eq. (2) can be quite imprecise12. The ex-
ception to this is if the spectral sensitivities of the vision
system are very narrow-band. In this circumstance Eq.
(2) is exact. In fact the von Kries model is quite accu-
rate so long as there exists linear combinations of sensi-
tivities which are narrow-band. This observation forms
the basis of Finlayson et al’s3 spectral sharpening method.
They show that if the sensor response functions are first
transformed to a more narrow-band (or sharper) sensor
basis  then the accuracy of Eq. (2) is improved. Indeed a
von Kries type model is quite adequate for all sensor
sets2. Von Kries plus sharpening can be written as
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responses—where the diagonal assumption breaks
down—only 74 images are perfectly matched, with 8
ranked under second place and the remaining 2 ranked
as third matches in the database.

As a second test we constructed a database of  55
angular indices one per object for Swain and Ballard’s
object database (each index is calculated from a color
image of  each object). A test set of angular indices are
generated for 24 of these objects viewed in different
positions and with small degrees of occlusion and de-
formation; however, the illumination color was held con-
stant. These test indices are then compared to the model
indices and the rank of  the correct match calculated.
Table 2 summarizes the match rankings for angular in-
dexing. Color Constant Color Indexing4 and Healey and
Slater’s5 algorithm have also been implemented and run
on the same data; ranking results from running these al-
gorithms are also shown in Table 2. Our algorithm does
reasonably well in matching most of the objects within
the top 3 places—only 1 object returns a greater than
third place match. This match success is quite remark-
able given that we are indexing a large database (55 ob-
jects!) with just 3 numbers. Moreover comparison is
comparable with CCCI (which matches based on the
thousands of histogram bin counts), although CCCI man-
ages to rank all but 2 in the first place. Healey’s algo-
rithm does much worse with 7 images ranked greater
than third place.

Table 1. Performance of Human Cone responses vs
sharpened responses on synthetic data

Co ne
Res po ns es

Ranki ng s

1 2 3 > 3

Sharpened 84 0 0 0
Human Cones 74 8 2 0

Table 2. Database of 55 real objects

Al g o ri thm  Ranki ng s
1 2 3 >3

Angular 16 5 2 1
CCCI 22 2 0 0

Healey 7 7 3 7

Table 3. Database of 13 real objects

Al g o ri thm  Ranki ng s
1 2 3 >3

Angular 20 3 3 0
CCCI 24 2 0 0

Healey 11 6 6 3

In Table 3, we compare the performance of the 3
algorithms for a second set of 13 objects where illumi-
nation color is varied. The database in this case com-
prises features derived for images taken under a whitish
artificial light. The 26 test features are derived from the
same objects, viewed in different positions and under
either bluish or reddish illumination. The angle-invari-
ant method matches  20 out of the 26 test images per-
fectly, though all the objects are identified within the
top 3 rankings. CCCI does a little better correctly iden-
tifying 24 of the 26 images. Healey’s algorithm performs
significantly worse matching just 11 images correctly,
although 3 images have a match ranking greater than 3.

Conclusion

A new method of color based object recognition has been
presented based on the angle between the 3 bands of a
color image where each band is viewed as a vector. The
method’s primary virtue lies in the speed with which the
angle invariants can be computed and the simplicity with
which they can be compared to angle invariants stored
in the database of known objects. It is significantly faster
than CCCI and comparable to Healey’s algorithm in the
amount of time taken to compute and match the angle
invariants. As shown by experiments using both real and
synthetic data, the three angle invariants provide very
good matching results, nearly always identifying the
correct object within the top three.
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