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Calculating the OTF enabled us to quantify a num-
ber of the interactions between wavelength and spatial
frequency relevant for color perception and image match-
ing. First, above 20 cycles per degree (cpd), only wave-
lengths near the accommodated wavelength can have
detectable contrast in the retinal image, which implies
that high spatial-frequency components play little role
in color and contrast perception. Second, in the moder-
ate spatial-frequency range, from 520 cpd, when the
observer is accommodated to the yellow or green part of
the spectrum, the visual system is dichromatic: there is
no contrast in the short-wavelength receptor class.

Perhaps most important, the OTF we calculated sug-
gests an improved procedure for matching color images.
The conventional method of setting point-by-point
match- es between images fails to account for the fact
that image points on different displays may not have
same pointspread function on the retina Since the spa-
tial patterns on the retina from individual points on the
displays do not match, one cannot match the retinal im-
ages of two points simply by adjusting the intensities of
the three display primaries. Instead, to equate photo-pig-
ment absorptions between images on different displays,
one must adjust the primary intensities in correspond-
ing spatial-frequency bands. (We describe this procedure
in more detail below.)

Because the OTF depends on the wavelength of the
corneal image (as wed as its spatial frequency), using it
to compute photoreceptor responses can be compu-
tationally quite expensive. When an image arises from a
natural scene, representing the surface and illuminant
spectral functions with finite-dimensional linear mod-
els greatly simplifies the computation. In that case, a
simpler OTF can be computed that depends not on the
wavelength of the corneal image but only on the weights
of the basis functions that model the image. The number
of weights win in most cases be much smaller than the
number of wavelength samples, which is why the com-
putation becomes so much less expensive.

This simpler OTF can also be used to predict matches
of color images on emissive displays. This is because
emissive displays can be represented with a three-di-
mensional linear model. We presented our algorithm for
color matching on emissive displays in an earlier pa-
per7. Here we show that this use of the OTF is a special
case of the OTF that arises from representing surface
and illuminant functions with linear models.

Abstract

In an earlier paper7, we modeled the axial chromatic ab-
erration of the human eye with an optical transfer func-
tion (OTF). The OTF quantifies the interaction between
wavelength and spatial pattern in retinal image form-
ation, and therefore has important consequences for
color perception and image matching. However, using
the OTF for practical calculations can be quite cumber-
some. Here, we show how using finite dimensional lin-
ear models for surface and illuminant spectral functions
greatly simplifies these calculations in certain cases. In our
earlier wow, we applied our model to the problem of
matching color images on missive displays; we show here
how this application is a special case of this use of lin-
ear models.

Introduction

Because the human eye has an optical defect caned axial
chromatic aberration, it can only be in focus at one wave-
length at a time. Other wavelengths are out of focus and
cause a blurred image to form on the retina The amount
of blurring depends on both the wavelength composi-
tion of the light and its spatial pattern. This interaction
between wavelength and spatial pattern has important
consequences for color perception and image matching.
In this paper, we show how the use of linear models
greatly simplifies the calculations required to quantify
these consequences, and how to apply them to the prob-
lem of matching color images.

We have modeled the transformation from the im-
age at the eye, which we cad the corneas image, to the
retinal image as an optical transfer function (OTF)7. We
based our calculations on an analysis of the chromatic
aberration of a diffraction-limited optical system with a
circular aperture described by Hopkins (1955)5. We
implemented Hopkins’ calculation using the parameters
of the human eye6,11,8,1,10,9,3, and we used the results of
Williams et  al.14 to incorporate the wavelength-
independent aberrations. The OTF takes the wavelength
and spatial frequency distribution of the corneal image
and produces the wavelength and spatial frequency dis-
tribution of the retinal image. Using the wavelength sen-
sitivity of the retinal photoreceptors, we can then
compute the spatial frequency distribution of photore-
ceptor responses.
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The remainder of the paper is organized as follows.
In the next section, we introduce notation for the OTF
and show how to use it to predict photoreceptor re-
sponses. Next, we introduce linear models for surface
and illuminant spectral functions and show how their use
simplifies the prediction of photoreceptor responses.
Then we show how our algorithm for matching color
images across emissive displays is a special case of this
simplification. Finally, we present a few conclusions.

The OTF and Retinal Images

To make these ideas more concrete, we introduce some
notation and show how to use the OTF to compute reti-
nal images. For simplicity, we deal only with one-
dimensional images, but the extension to two dimensions
is straightforward. Let the optical transfer function be
O(ν, λ), where ν is spatial frequency in cycles per de-
gree, and λ is wavelength in meters. Let the one-dimen-
sional corneal image be ƒ (χ, λ), where χ is spatial
position in degrees of visual angle. At location χ0, for
example, the SPD of the corneal image is ƒ (χ0, λ). We
denote the corresponding retinal image as g(χ, λ). Fi-
nally, we denote the Fourier transform of these images
with respect to the spatial variable, χ, using capital let-
ters, F(ν, λ) and G(ν, λ).

The OTF O relates the Fourier transform of the cor-
neal image, F (ν,λ ), to the Fourier transform of the reti-
nal image G(ν, λ), via

G (ν, λ) =F (ν, λ)O (ν, λ)

To express the retinal image in terms of photore-
ceptor absorptions, we combine the OTF with the
photopigment absorption curves Ai (λ). When we com-
pute the photoreceptor absorptions, Pi, from a uniform
field with spectral power distribution F(λ), we use the
formula

Pi = F(λ) ΑιV∫ (λ)dλ

where V is the range of visual wavelengths. But when
we compute the Fourier transform of the spatial pattern
of photoreceptor absorptions for the ith class of photo-
receptors, Pi(v), from an image with Fourier transform
F(ν, λ ), we must incorporate the OTF via the following
equation:

Pi (v) = F(v,λ )O(λ ,v)Ai (λ )dλ
v∫  (1)

Linear Models for Surfaces and Illuminants

When a scene consists of surfaces and illuminants whose
spectral functions can be described with finite-dimen-
sional linear models, we can greatly simplify the pre-
diction of retinal from corneal images. (For a introduction
to the use of linear models for spectral functions, see
Wandell12). Suppose for the illuminant SPD we have the

linear model E(λ ) = ω i
E

i=1

dE

∑ Ei (λ ), where E(λ)  is the

illuminant SPD, d
E
 is the dimension of the linear model,

Ei(λ) is the ith basis function, and ω i
E the weight on the

ith basis function. The spatial distribution of illuminant

SPDs then becomes e(χ ,λ ) = ω i
E (χ )Ei (λ ),

i=1

dE

∑ where the

weights ω i
E  now depend on the spatial location χ.  When

we describe surface reflection functions with a linear
model, the analogous equation for the spatial distribu-

tion of surface reflectances is s(χ ,λ ) = ω i
s (χ )Sj (λ ).

j=1

ds

∑

The corneal image f (χ, λ) is the product of the
illuminant and surface spatial distributions

ƒ(χ, λ)=e (χ, λ) s (χ, λ).

Expressing the illuminant and surface distributions
in terms of their linear models, we have

ƒ(χ, λ) = i
Eω (χ)Ei (λ)

i=1

dE

∑





 j
Sω (χ)Sj(λ)

j=1

d
S

∑










= (
j=1

ds

∑
i=1

dE

∑ i
Eω (χ) j

sω (χ)) (Ei (λ)Sj (λ))

(2)

We now show that this defines a finite-dimensional
model for the image ƒ(χ, λ). Let k = (i - 1)d

s
 + j, so that

k ranges from 1 to d
F
 = d

E
d

s
. Then define F

k
(λ) =

E
i
(λ)S

j
(λ), and ω k

F (χ) = ω i
E  (χ) ω j

S  (χ). Substituting these
expressions into Equation 2, we find that

f (χ ,λ ) = ω k
F

k=1

dF

∑ (χ )Fk (λ ) .

This implies a a dF -dimensional linear model for F
(λ ) . The Fourier transform of ƒ (χ, λ) is

F(v,λ ) = Wk
F

k=1

dF

∑ (v)Fk (λ ), (3)

where WK
F (v)  is the Fourier transform of ω k

F (χ).
To compute the spatial pattern of photoreceptor ab-

sorptions, we again use Equation 1, but now we express
the integral in a slightly different form by substituting
the definition of F from Equation 3:

Pi (ν) = k
FW (ν)Fk (λ)

k =1

dF

∑



V∫ o(λ, ν) Αi (λ)dλ

= k
FW

k=1

dF
∑ (ν) Fk (λ)O(λ,

V∫ ν) Αi (λ)dλ

By defining a new function,

Cik (ν) = Fk (λ)
V∫ o(λ, ν)Ai (λ)dλ

we can write the relationship between the spatial-fre-
quency components of the dF basis functions for F and

.

.
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the spatial frequency components of the spatial pattern
of photoreceptors as

Pi (ν) = Cik
j=1

dF

∑ (ν) Fk (ν) , (4)

which we can in turn write as a matrix multiplica-
tion computed separately for each spatial-frequency
component:

  

P2 (v)
P3 (v)

P1 (v)







 = C21 (v)

C31 (v)

C11 (v)
C22 (v)
C32 (v)

C12 (v)
C2dF

(v)
C3dF

(v)

C1dF
(v)









M
FdF

(v)

F2 (v)
F1 (v)















. (5)

We will express the spatial-frequency-dependent
matrix multiplication using the matrix notation

Pν = CνFν, (6)

where Pv is a three-dimensional column vector with en-
tries Pi (v), Cv is a three-by-three matrix with entries Cik
(v), and Fv is a dF-dimensional column vector with en-
tries Fk (v).

Color Matching on Emissive Displays

To model a emissive display in this framework, we ob-
serve that conventional displays have three primary
lights, each with its own SPD. At each spatial location,
the SPD of the display is a linear combination of the
SPDs of the three primaries. Clearly this is the case of
Equation 3, where the corneal image is expressed in terms
of a finite-dimensional linear model. The dimension dF
= 3, and each Fk (λ) is the SPD of one of the three pri-
maries. In this case, the linear model is a consequence
not of the linear models for the illuminant and surface
spectral functions, but merely of the way that an emis-
sive display forms images.

For an emissive display, Equations 4-6 generalize
the matrix equation commonly used in color calibration
from the special case of a uniform field. When we incor-
porate the OTF into the calculation, we can relate the
primary intensities to the photoreceptor absorptions by
expressing the images in the spatial-frequency domain.
We must use a different matrix at each spatial frequency.
The entries of the matrix are determined by the spectral
power distributions of the display primaries, the
photopigment absorption curves, and the optical trans-
fer function of the eye. In the case of an emissive dis-
play, we call  the collection of matrices Cv the
device-calibration matrices.

Notice that the matrix C0 defines the mapping from
the display primary intensities of a uniform field (spa-
tial frequency of zero) to the receptor responses. This
three-by-three calibration matrix is widely used in con-
ventional colorimetry2,4,13. The device-calibration ma-
trices, which now depend on spatial frequency, generalize
conventional colorimetric mapping from uniform fields
to patterned images.

Using Equation 6, we can develop a method of equat-
ing the photoreceptor absorptions from images on dis-
play with different primaries. Suppose we have two
displays with calibration matrices Cv and Cv

' . Consider
an image, Fv

' . We can calculate the expected pattern of
photoreceptor absorptions for the image on the first dis-
play from the matrix multiplication, CνFν. To equate
photoreceptor absorptions from the two images requires
that we find an image on the second display, defined by
Fv such that at each spatial frequency,

Cv
' Fv

'  = CνFν. (7)

For each spatial frequency, v, we can solve for the
image F’ν using

Fv
'  = ( Cv

' )-1 Cν Fν

In practice, we may be limited in how closely we
can obtain the matches since the matrices Cv

'  may not be
invertible, and the solutions may not lie within the color
gamut of the second display.

Conclusions

Because of the eye’s chromatic aberration, the wave-
length and spatial frequency of corneal images interact
in the formation of retinal images. In our earlier work
we have modeled this interaction as an OTF, calculated
the OTF based on optical and psychophysical measure-
ments, and quantified some consequences of the OTF
interaction for color perception and imaging matching.
This led to a new algorithm for matching color images
across emissive displays. Here, we showed that using
linear models of surface and illuminant spectral func-
tions greatly simplifies the use of the OTF for images
arising from natural scenes, and that our algorithm for
matching color images is a special case of this use of
linear models.
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