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Abstract

For exact color reproduction of objects under varying
illuminants it is necessary to provide information on the
complete reflectance spectrum. Since no analytical so-
lution exists a stochastic optimization algorithm is ap-
plied to calculate basis vectors for representing a set of
test spectra that lead to a minimal color deviation.

Introduction

The colors of objects depend on their reflectance spec-
tra and on the spectrum of their illumination. To allow
color reproduction for different light sources it is neces-
sary to record and store more information on the reflec-
tance spectrum than only the three-stimulus values
supplied by usual cameras. A common method to com-
press the overwhelming amount of data to describe re-
flectance spectra is transform coding. The spectra are
represented as linear combinations of an orthonormal
basis vector set.

Some work has already been carried out concerning
the problem of choosing appropriate basis functions.
Exact reproduction can be achieved for a limited num-
ber of N different light sources using 3N basis functions1.
If the number of light sources increases, small color er-
rors must be admitted to maintain a practicable number
of basis functions.

The use of Fourier basis functions is a strategy that
exploits the band limited characteristic of reflectance
spectra. A different approach aims for a minimization
of the mean squared error (MSE) between the original
and the reconstructed spectrum using as few basis vec-
tors as possible. Here an analytical solution exists called
the principal component analysis (PCA) which depends
on the statistical properties of the spectra set to be rep-
resented2,3. It offers the best data compression effi-
ciency because of optimal energy concentration in few
components.

Nevertheless a correct solution would aim for a dif-
ferent error measure to minimize. The MSE between the
spectra allows no statement concerning the visual color
difference. It disregards the human visual system per-
ceiving the colors as well as it does not take different
illuminations into account. To analyze the visual color

difference resulting from coding a reflectance spectrum
it is necessary to calculate the tristimulus color values
under all of the considered illuminants. These color
triples must be transformed into a visually uniform color
space before calculating the difference between the origi-
nal and the coded reflectance spectrum. Transformation
into standardized visually uniform color spaces implies
nonlinear operations. The error measure might contain
nonlin- earities as well. Thus minimizing such an error
measure one encounters a nonlinear quality criterion for
which no analytical solution for the optimal basis func-
tion set can be given. Therefore an unconstrained sto-
chastic optimization algorithm is applied to calculate sets
of basis functions in order to minimize the visual color
difference.

Basic Elements

The optimization is performed with respect to the re-
flectance spectra published by Vhrel et al.4 They con-
tain the spectra of 64 Munsell chips, 120 Du Pont paint
chips and 170 natural objects sampled in the range be-
tween 400 and 700 nm at intervals of 10 nm.

Orientation of the first three basis vectors is orga-
nized according to Keusen et al.5 to span the human vi-
sual system for a spectrally equal energy white
illumination (the choice of this illuminant E is arbitrary).
This space equals the space spanned by the three color
matching functions X(λ), Y(λ) and Z(λ). Hence the first
three vectors yield a perfect color reconstruction for
illuminant E. Orthogonal to these three vectors remains
the so called metameric black space. The following ba-
sis vectors (that span a subspace of the metameric black
space) are optimized in a manner that for a set of further
illuminations the visual color difference is minimized.

Usually the quality of color reproduction is given
after transforming the three-stimulus value XYZ into a
visually uniform color space, such as the standardized
CIELab space.

The Euclidean distance between two color coordi-
nates in the CIELab color space is abbreviated ∆E

ab
.

According to a set of original and reconstructed three-
stimulus values the quality is stated by the mean ∆E

ab
,

the maximum ∆E
ab

, and the number of visible errors, that
is the number of ∆E

ab
 exceeding the value of 3.
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Consequently the optimization criterion is chosen
as one of these quality measures. In this paper results
are given optimizing first of all the maximum ∆E

ab
 for a

given set of test spectra combined with a set of illu-
minants. Thus, it is guaranteed to offer an overall good
color reproduction quality without single outliers. Ad-
ditionally, optimization was performed minimizing the
mean ∆E

ab
.

In Vhrel et al.6 the Euclidean distance in the CIELab
color space was evaluated in order to optimize filter
transmission spectra for recording of colors. An uncon-
strained numerical gradient optimization method was
employed to approach the optimum filter set. Presum-
ing that it is not ensured to hit the global optimum by
that means a different optimization strategy was chosen
here.

Stochastic Optimization

The most famous stochastic optimization scheme was
introduced using the term “simulated annealing”. It is
designed to find among a variety of “configurations” the
one that minimizes a specific “quality criterion”. In our
problem the “configurations” are the different sets of
orthogonal basis vectors, and the “quality criterion” is
represented by the maximum ∆Eab or the mean ∆Eab,
respectively.

At every iteration a small stochastic perturbation is
performed on the configuration and the corresponding
new quality criterion is calculated. If the new quality is
better, then the new configuration is accepted as the start-
ing configuration for the next iteration. If the new qual-
ity is worse than the old one, then the new configuration
is accepted only with a certain small probability. This
probability is lowered gradually during the optimization
process. Thus, towards the end of the optimization only
the better configurations are accepted so that a conver-
gence near the global optimum can be expected.

The scheme according to which the probability is
lowered has a great influence on the performance of the
strategy. Therefore a sophisticated schedule is needed
how to adapt the probability to the time during the opti-
mization and to the current quality.

Improvements on Stochastic Optimization

Some important enhancements to simulated annealing
were published by Dueck et al.7,8. They found a signifi-
cant improvement by slightly changing the scheme for
accepting worse configurations. Two different strategies
were presented, operating as follows.

Threshold Accepting (TA)
The difference between the previous and the new

quality measure is compared to a threshold. The new
configuration is accepted, if the threshold is not exceeded
(if the new configuration is not much worse).

During the optimization process the threshold is low-
ered gradually towards zero, leading to the acceptance
of only the better configurations in the end. At a thresh-
old of zero, the optimization is finished.

Great Deluge Algorithm (GDA)
The quality measure is always forced to stay above

a quality level which is slowly raised during the optimi-
zation process.

When this level has become too high to find con-
figurations with a quality measure above, the optimiza-
tion is finished. In practice this condition is met either
when the quality level has risen above the current qual-
ity measure or when there is no acceptance of a new con-
figuration for a long time.

After largescale experiments both strategies were
reported to yield remarkably better results than simu-
lated annealing, requiring less computational time.
Therefore they are well suited for this optimization
problem which implies rather time consuming quality
calculation.

Furthermore they are distinguished by the depen-
dency of only one single parameter, the threshold de-
cline or the level rising speed, respectively. The quality
of the optimization turns out to be very insensitive to
slight changes of these parameters. In comparison with
that, simulated annealing requires a complicated sched-
ule, in order to lower the possibility to accept worse con-
figurations.

Threshold accepting offers another advantage: its
computational time can be predetermined. The optimi-
zation is finished when the threshold reaches zero,
whereas it is not predictable, when in the GDA no solu-
tion better than the level can be found anymore.

Implementation

The whole algorithm can be outlined as follows:
  • Adjust the first three basis vectors to build an ortho-

normal set parallel to  the human  visual  system  for
illuminant E (arbitrary), which is the XYZ-space.

  • Choose a set of further illuminants to optimize for,
which is D65, D50, C, A, F2, and F11 in our case.

  • Initialize the basis vectors to be optimized with ran-
dom coefficients keeping orthonormality.

  • Iterate the following steps:
- Perform a small perturbation on the basis vectors

to be optimized: randomly choose a vector, choose
a coefficient and choose an offset.

- Orthonormalize the basis vectors again.
- Calculate  the  error  criterion, which is the maxi-

mum ∆Eab or the mean ∆Eab for the chosen illum-
inants over all test spectra.

- Decide whether to accept the new basis vector set
or not.

- Lower threshold (TA) or raise quality level (GDA),
respectively.

- When threshold has declined to zero (TA) or when
there  is  no acceptance of a  new basis vector  set
for a long time (GDA): FINISH.

To generate a complete set of basis vectors two dif-
ferent optimization strategies were pursued.

Successive refinement. Each of the basis vectors is
optimized on its own, so the basis vector set can be used
hierarchically. A set of N vectors is constructed out of the
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set of N-1 vectors plus one additional vector, leaving the
previous set of N-1 vectors unchanged. With each new
coefficient the metameric black space is refined further.

Independent calculation. The optimization is ap-
plied on every whole basis vector set (except for the first
three vectors). Hence, a set of N vectors may differ com-
pletely from the set of N-1 vectors. Because of the miss-
ing constraint to be hierarchical and the greater number
of degrees of freedom during the optimization process
this strategy is expected to yield better results.

It must be emphasized that there was no sophisti-
cated scheme employed, to lower the threshold (TA) or
to raise the quality level (GDA). Especially, there was
no fine-tuning of parameters for the different sets of basis
vectors to be optimized. The parameters only differ with
the quality measure, since the values of the maximum
∆Eab are always somewhat greater than of the mean ∆Eab.

For the TA the number of runs was set to 1,000,000
and the threshold was linearly declined towards zero
starting at values of 0.02 (maximum ∆Eab) and 0.01
(mean ∆Eab). The GDA was arranged to raise the qual-
ity level (precisely: lower the error level) gradually af-
ter every 500 iterations, starting with the qualities
resulting from random initialization of the basis vectors.
The level raising speed was set to values of 0.002 (maxi-
mum ∆Eab) and 0.001 (mean ∆Eab). When there has been
no acceptance of new configurations for a period of such
500 iterations, the optimization was finished.

Concerning the ‘small perturbation’ on the basis
vectors, the randomly chosen coefficient was added by
an offset that was equally distributed in the interval
[-0.02, 0.02].

To demonstrate the still immense amount of calcu-
lations for one single optimization run, here is a little
example:

For calculating the three color values X, Y, and Z,
for every of the 354 spectra, which consist of 31 samples
each, under all 6 different illuminants, about 200,000
operations are required. This has to be done at each it-
eration. Therefore one whole run of the TA consists of
at least 2•1011 multiplications and additions. Imple-
mented on a SUN SPARC 20-502 using the program-
ming language C this one run requires about 22 hours.

Results

The TA turned out to yield very stable results for vari-
ous random starting conditions. As far as the optimiza-
tion of the mean ∆Eab was concerned, similar values
could be achieved using the GDA. The optimal values
differed throughout by less than one percent. Actually
the GDA required significantly less iteration steps for
the optimization. For calculating all 9 basis vector sets,
for which the results are given in the tables, the TA
needed altogether 9⋅ 106 iteration steps, versus about
2.4106 iteration steps for the GDA.

Surprisingly the GDA failed in optimizing the maxi-
mum ∆Eab. Even with a very low level rising speed, lead-
ing to much more iteration steps than the TA takes, rather
bad values are obtained. The “maximum” operation
seems to produce very many local optima which serve

as traps for the GDA. Once a configuration of basis vec-
tors got stuck in such a local optimum in a late phase of
the optimization, the way out was often obstructed by
the continuously rising quality level. The TA algorithm
is more flexible because it enables the configuration to
make many steps each of them a little worsening, thus
leaving local optima.

In the following tables a summary of the results
obtained by a typical TA run is given. Table 1 shows the
maximum ∆Eab over all 354 reflectance spectra taking
into account the 6 illuminants D65, D50, C, A, F2, and
F11. The calculation was performed after representing
the reflectance spectra with 3 to 8 basis vectors. The first
three basis vectors were organized as stated above, span-
ning the human visual system for illuminant E. Basis
vectors 4 to 8 result from the optimizations, regarding
the criteria maximum ∆Eab and mean ∆Eab, respectively.
Both of the optimization criteria were combined with
the strategies independent calculation and successive
refinement. For comparison, the principal component
analysis has been applied to the projection of the reflec-
tance spectra set onto the metameric black space, to get
a set of basis vectors.

Tables 2 and 3 show the corresponding mean ∆Eab
and the number of ∆Eab exceeding the value of 3. It is
important to mention, that illuminant E, which we al-
ways have perfect color reconstruction for, is not con-
sidered. Otherwise the values would be even smaller.

Table 1. Maximum ∆Eab

basis PCA max i mum mean
vectors i ndep. s ucc . indep. succ.

3 26.053
4 24.625 1 2 . 2 4 6 20.672
5 13.695 3 . 7 4 8 8 . 8 1 4 7.539 8.143
6 19.031 2 . 9 6 7 7 . 0 1 8 6.744 7.741
7 10.870 1 . 3 2 8 6 . 8 4 0 5.957 5.002
8 10.587 0 . 8 3 7 6 . 3 9 7 1.729 5.051

Table 2. Mean ∆Eab

basis PCA maximum mean
vectors indep. succ. i ndep. s ucc .

3 3.783

4 1.984 2.798 1 . 5 4 2

5 1.015 0.910 2.636 0 . 6 6 7 0 . 8 4 6

6 0.706 0.867 1.946 0 . 4 3 3 0 . 6 8 3

7 0.478 0.615 1.822 0 . 2 4 5 0 . 5 0 8

8 0.428 0.336 1.765 0 . 1 1 7 0 . 3 1 5

As a result of choosing the maximum ∆Eab or the
mean ∆Eab as the optimization criteria the other error
measures are sometimes worse than the ones produced
using the PCA basis vectors. This is a well expected fact.
With the described algorithm every combination of er-
ror measures can be optimized regardless of any other
constraints.
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viation for a given set of reflectance spectra under a given
set of different illuminations.

The remaining color deviation is essentially smaller
than that achieved using the principal component analy-
sis (PCA).

The result from this work can be regarded from two
different viewpoints.

At first it demonstrates the achievable color correct-
ness using transform coding for reflectance spectra. If
the first three basis vectors span the space of the human
visual system the corresponding three components are
sufficient to offer perfect color reconstruction for spec-
trally equal energy white illumination. Only two more
basis vectors (or components, respectively) yield an al-
most perfect color reproduction for a large set of test
reflectance spectra under a set of widely varying
illuminants.

The second aim of this paper was the presentation
of a powerful optimization algorithm which can be
adapted to maximize any nonlinear quality criterion and
which is therefore a good choice when problems re-
garding the nonlinearity of human color perception are
concerned.
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Table 3. Percentage of ∆Eab > 3

basis PCA maximum mean
vectors indep. succ. indep. succ.

3 41.1 %

4 19.1 % 37.2 % 12.9 %

5 7.3 % 2.2 % 36.0 % 1.9 % 1.7 %

6 4.1 % 0 22.3 % 1.4 % 1.7 %

7 2.1 % 0 18.5 % 1.1 % 1.0 %

8 1.5 % 0 17.4 % 0 0.6 %

Using the independent calculation strategy optimiz-
ing the maximum ∆Eab it can be concluded that two fur-
ther basis vectors added to the first three XYZ-spanning
vectors yield an almost visually perfect reconstruction
for all reflectance spectra under all used illuminations.
Only 2.2% of all combinations of reflectance spectra and
illuminations exceed the visibility threshold value of 3
and the maximum ∆Eab is not much above (3.748).

Figure 1 gives an impression of the corresponding
basis vectors.
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Figure 1. 5 Basis vectors, minimizing the maximum ∆Eab, in-
dependent calculation. Dotted are the XYZ-spanning vectors.

The values obtained with the successive refinement
strategy were throughout significantly worse than fol-
lowing the independent calculation strategy. Therefore
to get a hierarchical set of basis vectors, other optimiza-
tion criteria should be used, based on a combination of
qualities at all levels of the hierarchy.

Conclusion

Two different stochastic optimization strategies were
employed to achieve optimal sets of basis vectors for
the transform coding of reflectance spectra. The aim of
the optimization was to offer minimal visual color de-
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