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Abstract

Linear models appear in many recent color constancy
theories; however, they can play two quite different roles.
They may either occur as a direct component of the com-
putational strategy, as in the case of the Maloney-Wandell
algorithm; or they may appear as necessary part of the
theoretical development, but not as part of the computa-
tion perse, as in the case of algorithms based on spectral
sharpening (Finlayson, Drew, Funt). This paper surveys
recent work in color constancy and concludes that in
many circumstances the second role may be more ap-
propriate than the first.

Introduction

For us to build machines that reproduce colors accurately
or to make effective use of color in robotics requires that
we understand human color perception; and the last de-
cade has produced many interesting new computational
theories of color coming from both computer science and
psychology. A central concern of these theories is to de-
scribe how color depends or does not depend on the in-
cident illumination. A colored surface cannot be seen
unless we shine some light on it, but then the spectrum
of the reflected light depends on the product of the spec-
trum of the incident light’s spectrum and the surface’s
reflectance. Since the spectrum of the light energy reach-
ing the eye has the two factors of illumination and re-
flectance confounded into one the effect of the illumi-
nation must be taken into account in order to determine
the true surface properties.

When light of spectral power distribution (spectrum
for short) E(A) reflects off a matte surface of percent
surface spectral reflectance (reflectance for short) S(A)
it produces a color signal C(1),

C(A)=E(A)-S(A) (D

where the product is formed by multiplication on a wave-
length-by-wavelength basis over the visible wavelength
range of 400-700 nanometers. Each channel of spectral
sensitivity Rk(l) (k=1...3) in a trichromatic visual sys-
tem (human or machine based) responds according to

pk=]  C() R(A)dA )

Since the visual system at any given location in the
visual field makes only 3 measurements of the full color
signal, there is a substantial amount of data reduction

and possible data loss involved in Equation 2. In con-
trast, even a coarse 10nm sampling of the spectrum over
the 400-700nm range results in 31 measurements. If the
illumination E(A) were known and the incoming color
signal C(A) were measured in full, then equation (1) could
be directly solved for the surface reflectance properties
S(A). However, the visual system clearly faces a diffi-
cult problem in recovering any reliable illumination-in-
dependent information about S(4) since E(A) is unknown
and C(A) is so crudely reduced to only 3 values.

Computational Color Constancy

The various computational color constancy algorithms
can be divided along the dimensions: statistical assump-
tions about the distribution of surface colors, assump-
tions about reflectances and illuminants, image gamut
assumptions, peeking methods, requirements about mul-
tiple illuminants, and inclusion or discovery of known
surfaces. Statistical assumptions about scenes include a
variety of grey-world assumptions, for example that av-
eraged over the entire scene the surface reflectance is
grey or that it matches some other known average re-
flectance®!7 or that somewhere in every scene will be
found a surface patch that maximally stimulates each of
the long, medium and short wave sensors (retinex with
reset)?2. Brainard and Freeman! assume that the scene’s
illumination and reflectance spectra are drawn from
known probability distributions. All of these methods
work well when the statistical assumptions are met but
can easily be made to fail by designing reasonable scenes
in which the assumptions are not met.

The ‘peeking’ methods involve some method of
obtaining an indirect glimpse of the illumination. For
example, specularities usually reflect the incident illu-
mination unchanged and since the specular component
will be common to surfaces of different color it is pos-
sible?”-?3 to extract it. Similarly, light interreflected be-
tween two surfaces shares a common component due to
the incident illumination and so the incident illumina-
tion can be calculated!'®. Both the specularity and
interreflection methods are vulnerable to scenes in which
there are multiple sources of illumination. While a prob-
lem for these methods, multiple sources can also lead to
further information if it can be determined that the same
surface is being viewed under 2 or more illumination
conditions. This information has been exploited to ob-
tain surface shape32% and for color constancy'%3 Col-
lections of surfaces of known reflectance have been used
in volumetric color constancyZor supervised color con-
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stancy? to solve for the illumination. Recent methods'®!8
of color-based object recognition, that do not require
color constancy a priori can be used to find such collec-
tions of surfaces from which the illumination properties
can then be estimated.

Forsyth!? introduced the idea of a canonical gamut
of colors as a constraint for color constancy. A large set
of surfaces is examined under some standard illumina-
tion condition called the canonical illuminant and the
set of all p, sensor responses (i.e. ‘colors’) that arise is
tallied. The 3D convex hull of this set then defines the
canonical gamut, which is intended to represent the com-
plete set of sensor responses that could arise under the
canonical illuminant. When a different collection of sur-
faces is viewed under some unknown illuminant, the
convex hull of that collection’s sensor responses is ob-
tained and compared to the canonical gamut. To the ex-
tent that this collection of surfaces is a representative
one, the differences between the observed gamut and the
canonical gamut will be due to the differences in the il-
luminations. Comparing the gamuts is not as simple as
finding the mapping that transforms one gamut into an-
other, but intuitively it is somewhat like that. The actual
process involves taking each hull point of the canonical
gamut and calculating the set of mappings projecting it
into the observed gamut. The intersection of all the pos-
sible mappings for all the canonical hull points defines
the possibilities as to what the unknown illumination
might be.

Finite-Dimensional Linear Models

Assumptions about reflectances and illuminants can be
expressed in terms of the dimension of the linear mod-
els required to approximate them accurately. In general,
solving for color constancy is a very underconstrained
problem and even approximate solutions might be im-
possible were it not for the fact that the spectra of lights
and reflectances appear to be quite constrained. These
constraints are captured by finite-dimensional linear
models which are used in many recent color constancy
theories!7-2419,

Statistical analyses done using principal component
analysis of databases of reflectances and illuminations*2°
have shown that there is a great deal of correlation be-
tween the power at different wavelengths in these spec-
tra. This means that they can be described well by a
smaller number of parameters than used to describe the
data originally (e.g. 31). Surprisingly, as few as 3 pa-
rameters do quite well for daylight illuminations and
4-6 do well for reflectances. Illumination spectra are ap-
proximated as a linearly weighted sum of the first n basis
spectra obtained via the principal component analysis:

E()= 3 &E,(R) 3)

A similar equation holds for reflectances. Reducing
the number of parameters in this way of course helps in
terms of data reduction, but more importantly it means
that the number of unknowns to solve for drops to the
point where it may match the number of knowns which
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at most is 3 per image location.

One very interesting theory that exploits the reduc-
tion in unknowns is that of Maloney and Wandell?* They
assume, albeit somewhat unrealistically, that reflectances
can be reasonably represented using only 2 parameters.
Under this assumption, and because of the linearity found
in Equation 2, the set of sensor responses obtained from
a collection of differently colored surfaces under a single
illuminant must fall on a plane in color space. Color space
is the 3-dimensional space defined by the set of sensor
responses p, (k=1...3). In the Maloney-Wandell theory,
the illumination defines the orientation of the plane
spanned by the sensor responses found in the image so
that the illumination can be determined by fitting a plane
to the data and solving for its orientation.

3-Parameter Models

A particularly appealing feature of low-dimensional
models for spectra and reflectances is that information
about the entire function is encoded in a few parameters.
There may well be situations in which we need to deal
with the full spectrum, but it is far from clear that color
requires the full spectrum. A trichromatic system con-
denses the spectrum to 3 values and we know from color
matching experiments that 3 primaries suffice for color
mixing.

Both the Maloney-Wandell and Forsyth theories can
be simplified to a certain extent by a technique we call
spectral sharpening.® Spectral sharpening creates a new
set of sensor sensitivity functions through a fixed, lin-
ear combination of the original sensor sensitivity func-
tions R (A). The sharpened sensors are generally more
narrowband than the original sensors and this means that
adjustments for changes in the illumination can be mod-
eled accurately by simply scaling the responses of each
sensor independently.

Scaling the sensor responses independently corre-
sponds to a von Kries type method of adaptation. It also
equates to transforming the triple of sensor reposes by a
diagonal matrix in order to model a shift in the spectrum
of the illumination. In the past this scaling or diagonal
transformation has been applied directly to the cone re-
sponses. Even worse it has been applied to the CIE XYZ
coordinates as in the case of the CIELAB. The accuracy
with which a diagonal transform models illumination
change depends very much upon the coordinate system
in which it is performed. Spectral sharpening finds the
optimal coordinate system. Several definitions of
optimality have been tried which all lead to quite simi-
lar sets of sharpened sensors.

Extensive testing using typical illuminants and
reflectances has shown that the simple 3-parameter, di-
agonal scaling model performs very nearly as well as a
full 9-parameter linear transformation in mapping be-
tween the two sets of sensor responses obtained from a
single surface under two different illuminants. In addi-
tion, it works approximately as well (occasionally
slightly better, occasionally slightly worse) as when 3-
dimensional linear models are used to model the full
spectra of the illuminants. In other words, even when
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the spectra of the two illuminants and the sensor response
created under the first illuminant are given, a 3-dimen-
sional model of illumination is in general no more ef-
fective in predicting what the sensor response will be
under the second illuminant than a 3-parameter di-
agonal scaling model applied to the sharpened sensor
responses.

For the case in which illumination is modelled per-
fectly by a 3-dimensional linear model and reflectance
perfectly by a 2-dimensional model, we prove that a di-
agonal model completely accounts for any illumination
change’. The requirements of 3D illumination and 2D
reflectance are exactly those imposed by the Maloney-
Wandell algorithm in order for it to work perfectly. As a
result the Maloney-Wandell theory which was initially
formulated in terms of finite-dimensional linear mod-
els, can be re-stated in terms of a simple diagonal, von-
Kries-like, direct scaling of sharpened sensors.

This result is both surprising and, in a way, to be
expected: surprising in the sense that finite-dimensional
models appear at the core of the algorithm; expected in
that, as Brian Wandell?® argues, the algorithm always did
rely on exactly 3-parameters in describing
illumination—mnamely, the coefficients of the 3-dimen-
sional linear model—so the diagonal model offers sim-
ply a different set of 3 parameters.

Using finite-dimensional models Healey et. al'® de-
velop an interesting algorithm for illumination-invari-
ant object recognition. They show that for illuminations
that are 3-dimensional, a change in illumination causes
a simple linear transformation in their texture measure
which can then be factored out. As in the case of the
Maloney-Wandell algorithm, we show!! that their tex-
ture algorithm can be simplified by reformulating it in
terms of 3-parameter diagonal transformations applied
to spectrally sharpened sensor responses.

Sharpened sensors can be used also in the Forsyth
theory so that it is both simplified® and so that constraints
on the gamut of possible illuminations'® can be incorpo-
rated in addition to the constraints on the gamut of sur-
face reflectances. Although retinex?? is not formulated
in terms of finite-dimensional models, its calculations
will also discount the illuminant more effectively when
performed in sharpened sensor space.

I believe that other theories that depend on 3-dimen-
sional linear models such as Gershon’s!” and Brainard
and Freeman’s' can be similarly recast in terms of di-
agonal transformations, but have not as yet done so. That
some theories can be recast in terms of diagonal trans-
formations is not in any way intented as a criticism of
those theories (and if it were it would apply equally to
the several situations'#!%13 in which I have used 3-di-
mensional linear models) but rather as evidence for the
effectiveness of spectral sharpening.

Conclusion

Finite-dimensional models have played an important role
in the development of recent color theories, but in hind-
sight they are perhaps not really needed. Color is ad-
equately described by a 3-dimensional coordinate sys-
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tem. The perceived need for finite-dimensional models
stemmed more from the lack of a good basis for the color
coordinate system than a need actually to represent full
spectra. With the exception of circumstances in which
linear models of dimension 4 or greater are used (e.g. as
in computer graphics®) in general for the common 3-di-
mensional case, once the cone responses are converted
to the new sharpened sensor basis many color manipu-
lations can be performed in the new basis without re-
course to finite-dimensional descriptions of the under-
lying spectra.
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