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Introduction

The human retina encodes information about images
through the responses of three classes of photoreceptor,
often referred to as the L, M, and S cones. These photo-
receptors are arranged in three interleaved mosaics; at
any one retinal location only a single cone type samples
the retinal image. To create our percept of a continuous
colored world, the visual system must reconstruct the
responses of the missing two cone types at each retinal
location. The algorithm that performs this reconstruc-
tion works very well—we rarely perceive artifacts that
arise from the interleaved sampling arrangement.

Most CCD based color cameras employ the same
interleaved sampling architecture as the human retina.
Yet for CCD cameras, color artifacts are quite common
near sharp luminance boundaries. CCD cameras are more
susceptible to these artifacts because their reconstruc-
tion algorithms are not as successful as the one employed
by the human visual system.

This talk will begin by reviewing basic research
designed to elucidate reconstruction by the human vi-
sual system. We will then show how ideas that emerged
from the basic research have led to a new algorithm for
processing images acquired with CCD cameras.

Sampling and Reconstruction
by the Human Visual System

The initial encoding of light by the human visual system
is accomplished by specialized nerve cells called photo-
receptors. Each photoreceptor produces an electro-
chemical response when light is imaged on it by the
optics of the eye. The response of an individual photo-
receptor carries information about the intensity of the
image at a single location. Information about the image
as a whole is carried by the ensemble of responses from
the entire photoreceptor mosaic. We may think of the
retina as an image sensing device that discretely samples
the image.

Spatial sampling eliminates information about the
image. The information loss is illustrated in Figures 1
and 2. Figure 1 shows a regular one-dimensional sam-
pling mosaic. Sampling by such mosaics has been ex-
tensively analyzed in the engineering literature.1 The

figure also shows the intensity profiles of two one-di-
mensional sinusoidal images. Note that the images have
the same intensity at each location where there is a pho-
toreceptor; they differ only in the gaps between photo-
receptors. For this reason, the images cannot be distin-
guished by the responses of the photoreceptor mosaic;
the crucial information has been lost though the sam-
pling process.

When physically different images generate the same
ensemble of responses from a mosaic of photoreceptors,
we say that the images are aliases of one another. An
ensemble of photoreceptor responses defines an equiva-
lence class of images. Members of the equivalence class
have the property described above: they have same in-
tensity at each location where there is a receptor . A vi-
sual system cannot determine with certainty which
member of an equivalence class of aliases was actually
present.

Figure 1. The figure plots the intensity profile of two one-di-
mensional sinusoids with spatial frequencies of 2 c/image
(dashed) and 6 c/image (solid). The gratings are sampled by a
one-dimensional mosaic of 8 sensors. The sensor positions are
indicated by the cones at the top of the figure. The Nyquist
limit for this mosaic is 4 c/image. The two gratings have the
same intensities at each sensor location. They cannot be dis-
tinguished by any reconstruction scheme and are said to be
aliases of one another. Standard low-pass filtering will recon-
struct the 6 c/image grating as its 2 c/image alias.
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In the classic frequency domain analysis of regular
spatial sampling, the ambiguity introduced by sampling
is resolved by adding prior information that the physical
image is band-limited. The fundamental result for regu-
lar one-dimensional monochromatic sampling is that a
signal may be reconstructed from samples if it contains
no frequency components greater than the Nyquist limit
of the sampling mosaic. The Nyquist limit is defined as
half the sampling rate. Signal components at frequen-
cies above the Nyquist limit cannot be distinguished from
lower frequency components, as illustrated in Figure 1.
When standard methods are used, high frequency com-
ponents are reconstructed at lower frequencies. This
phenomenon is referred to as aliasing. The one-dimen-
sional result has been extended to handle two-dimen-
sional sampling both for regular (see e.g. Pratt2) and
irregular3-5 sampling mosaics.

Although the photoreceptors sample the image dis-
cretely, our conscious percept is of a spatially continu-
ous image. Apparently, our visual system uses the
information available in the ensemble of photoreceptor
responses to reconstruct a continuous representation of
the image. It is relatively easy to demonstrate the action
of this reconstruction process. There is a substantial area
of the retina where there are no photoreceptors at all.
This area is referred to as the optic disk; it is where nerve
fibers pass through the retina to connect with the pri-
mary visual cortex. Figure 2 emphasizes the formal simi-
larity between the situation at the optic disk and the
regular spatial sampling illustrated in Figure 1.
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Figure 2. Sampling at the optic disk. The cones at the top of
the figure show the location of photoreceptors in an irregular
one-dimensional sampling mosaic. The optic disk corresponds
to the gap in the center of the figure. The intensity profiles of
two one-dimensional images are shown. These images are iden-
tical at all locations where there is a photoreceptor and differ
only in the gaps between photoreceptors. They are thus aliases
of one another with respect to this mosaic in exactly the same
sense that the sinusoids of Figure 1 are aliases of one another
with respect to the regular sampling mosaic shown there.

In spite of the fact that there are no photoreceptors
in the optic disk, we do not perceive a hole in our visual
field. Rather, our visual system “fills-in” a percept for
us, based on the information provided by photorecep-
tors at other image locations. To experience this filling-
in, the reader may proceed as follows: a) close the left
eye, b) with the right eye, fixate on some object straight
ahead, c) hold up the right thumb at arms length, d)
slowly move the thumb horizontally to the right while
carefully maintaining fixation straight ahead. When the
thumb has moved about seven inches on its horizontal
traverse to the right, the image of the thumbnail will fall
on the optic disk. At this point, the thumbnail will dis-
appear and be replaced by a percept similar to the image
surrounding the optic disk. The disappearance is not due
simply to the fact that visual resolution decreases with
eccentricity: if the thumb is moved further to the right it
will reappear clearly enough. Apparently, whatever al-
gorithm the visual system uses to reconstruct the image
does not create for us the percept of a thumbnail in the
absence of any direct information that the thumbnail is
there. Generally, however, the reconstruction algorithm
works quite well, since we are rarely aware of the blind
spot corresponding to the optic disk. The detailed na-
ture of the algorithm that reconstructs the image near
the blind-spot is not currently well-understood. See Walls
for an interesting discussion.6

The filling-in that occurs at the optic disk is easy to
demonstrate because the disk is relatively large. For-
mally, however, there is no difference between recon-
structing an image across the large inter-receptor
spacings of the optic disk and across the much smaller
spacings between neighboring photoreceptors in the rest
of the retina. By using very fine patterns, it is possible
to demonstrate that reconstruction occurs at all retinal
locations. Williams7 constructed a specialized laser in-
terferometer capable of imaging high spatial frequency
gratings on the retina. Even in the fovea, where the in-
ter-receptor spacing is very small, he found that high-
spatial frequency gratings were misperceived as much
lower spatial frequency patterns.

The patterns perceived in Williams’ and other8,9

experiments are consistent with the notion that the vi-
sual system uses low-pass filtering to reconstruct a rep-
resentation of the image and most formal models of the
reconstruction process are based on this or closely re-
lated notions.5,8-12 Low-pass reconstruction is a reason-
able strategy for the visual system to employ for
monochromatic reconstruction at the fovea. This is be-
cause outside the laboratory blurring by the eye’s optics
constrains retinal spatial frequencies to be at or below
the Nyquist limit for the foveal photoreceptor mosaic.

The Trichromatic Reconstruction Problem

Our discussion so far has focused on spatial sampling
and reconstruction without any discussion of color. As
mentioned in the introduction, the cone photoreceptors
that support human color vision actually come in three
types, arranged in three interleaved submosaics. Color
CCD cameras share this same basic design. In this sec-
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tion, we discuss the trichromatic reconstruction prob-
lem. To start the transition from human vision to engi-
neering application, we introduce this problem in the
context of color CCD cameras.

The optics of a CCD camera produce an image which
is spatially sampled by the sensing elements of the CCD.
Each individual element functions in a manner analo-
gous to a single photoreceptor. We typically specify color
images by a triplet of red, green, and blue (RGB) values
at each pixel on a rectangular sampling grid. This repre-
sentation is not available directly from the output of most
color CCD cameras. Rather, these cameras provide only
single sensor response at each pixel. Color information
comes because the camera as a whole contains multiple
classes of sensing elements, with each class character-
ized by a distinct spectral sensitivity. Usually there are
three classes, referred to as red (R), green (G), and blue
(B). Figure 3 provides a schematic illustration of this
design.

Figure 3. Color CCD camera. Left: The CCD camera con-
tains a rectangular mosaic of sensing elements. Each element
has either an R, G, or B spectral sensitivity. Right: We may
think of the overall sensor mosaic as three interleaved
submosaics. Each submosaic corresponds to one of the three
sensor classes. Note that although the overall geometry of the
mosaic is rectangular, this is not the case for the individual
submosaics.

To obtain a full color image, we must reconstruct
the responses of all three sensor classes. We call this
trichromatic reconstruction. Trichromatic reconstruction
generalizes the classic problem of reconstructing signals
from samples.

Figure 4. Chromatic aliasing. The upper and lower panels plot
the R and G components of two sinusoids. One sinusoid is an
intensity grating with spatial frequency 3 c/image (solid). The
R and G components for this sinusoid are in phase. The sec-
ond sinusoid is a red/green grating with spatial frequency 1 c/
image (dashed). The R and G components for this sinusoid
are out of phase. The sinusoids are sampled by two interleaved
submosaics. The R sensor positions are indicated by the shaded
cones above the top panel. The G sensor positions are indi-
cated by the open cones above the bottom panel. The two si-
nusoids produce the same responses in all of the sensors and
cannot be distinguished by any reconstruction scheme. Low-
pass filtering applied separately to each submosaic will re-
construct the 3 c/image intensity grating as its 1 c/image red/
green alias. Although the total number of sensors is the same
as it was in Figure 2, distortion from aliasing occurs at lower
spatial frequencies.
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The most straightforward approach to reconstruct-
ing full color images is to treat each sensor class sepa-
rately. Standard methods may then be applied to each
submosaic in turn. The disadvantage of this approach is
that aliasing will occur when the image contains spatial
frequencies above the Nyquist limits of the individual
submosaics, as illustrated in Figure 4. This sort of chro-
matic aliasing can produce objectionable artifacts in
images recorded with color CCD cameras, particularly
near intensity edges (see Figure 5). Such artifacts are
readily observed in many commercially available
camcorders.

Figure 5. Chromatic aliasing at edges. The upper and lower
panels plot the R and G components of two signals. One sig-
nal is an intensity step edge (solid). The R and G components
of this edge are in phase with one another. The second signal
is a low frequency alias of the intensity step edge (dashed).
The sinusoids are sampled by two interleaved submosaics. The
R sensor positions are indicated by the shaded cones above
the top panel. The G sensor positions are indicated by the open
cones above the bottom panel. The two signals produce the
same responses in all of the sensors. Careful examination of
the low frequency alias reveals that its R and G components
are not in phase at locations adjacent to the edge. This alias
will contain visually salient colored fringes.

Because the cut-off frequency of the human optical
system is well-matched to the Nyquist frequency of the

overall retinal sampling mosaic, the human visual sys-
tem should be subject to the same sort of chromatic fring-
ing exhibited by CCD cameras. Yet such fringing is not
part of our typical perceptual experience. We can view
fine spatial patterns without perceiving objectionable
artifacts from the interleaved design of our trichromatic
retinal mosaic.

Williams et al.13  studied in detail the appearance of
intensity gratings at a spatial frequency of 20 cycles per
degree. This spatial frequencies is well-below the
Nyquist limit for the foveal cone mosaic as a whole but
is close to the Nyquist frequency for the L and M cone
submosaics. What Williams et al. observed is that most
observers perceived low contrast red and green splotches
superimposed on the perceived intensity grating. They
measured the apparent contrast of the splotches by ask-
ing observers to match it to that of an adjustable red-
green grating of low spatial frequency. Williams et al.
developed a simple model that explained these splotches
as an example of chromatic aliasing. They assumed sam-
pling by a trichromatic retinal mosaic and a reconstruc-
tion algorithm that treated the signals from each of the
three submosaics separately. The output of this model
was a trichromatic image that contained exactly the sort
of splotches reported by observers. The contrast of these
splotches, however, was much higher than that reported
by observers. Indeed, the splotches dominate the model
output (see the color plates in Williams et al.’s paper),
whereas for the human observer they are quite subtle.

One interesting possibility that could explain Will-
iams et al.’s result is that the visual system combines
information from all three cone types rather than pro-
cessing each type separately. To understand this idea,
consider Figure 6. Each numbered column of the matrix
corresponds to a spatial location. Each row corresponds
to a cone type. A trichromatic image can be completely
specified (at the sampling resolution of the matrix) by
specifying an intensity value for each of the matrix cells,
that is by specifying the intensity seen by each class of
cone at each spatial location. A dot in the figure indi-
cates locations where a cone photoreceptor is present.
Note that at most one dot occurs in each row, illustrat-
ing that there is at most one cone at any location. The
trichromatic reconstruction problem is to use the infor-
mation available from the cells where cones are present
to estimate the image intensity in all the cells.

As noted above, the natural generalization of mono-
chromatic reconstruction methods is to restrict the re-
construction procedure to process each cone class
separately. Under this general strategy, the missing in-
tensity values within each row would be estimated us-
ing only photoreceptor responses from the same row.
Such estimation could be accomplished using any stan-
dard monochromatic reconstruction method. Adopting
this strategy, however, prevents the use of information
carried by, say, the L cones about the intensities that
would be seen by, say, the missing M cones.

In general, the information carried by the response
in one cell of the matrix about the intensity value of an-
other cell depends on the correlation between the two:
the higher the correlation, the more useful the response.
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Separate submosaic methods take advantage of correla-
tions between neighboring locations within a single cone
class. If there are correlations across cone classes at a
single location, this information is ignored.
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Figure 6. The figure illustrates one dimensional trichromatic
reconstruction. Each numbered column of the matrix corre-
sponds to a single spatial location. Each row corresponds to
a cone type. A dot in the figure indicates locations where a
cone photoreceptor is present. The type of the cone is indi-
cated by the row in which the dot occurs. The estimation prob-
lem is to use the information available in the boxes where cones
are present to estimate the image intensity in all the boxes.

The few measurements that exist about the correla-
tion of signals in different color bands suggest that these
correlations are very high for natural images. This sug-
gests that the performance of separate submosaic meth-
ods can be improved by combining information across
photoreceptor classes. Brainard and Williams14 con-
ducted experiments on how the human visual system
reconstructs signals from S cones. They were able to
demonstrate conditions where the spatial structure of the
percept corresponding to S cones is influenced by sig-
nals from the L and M cones. Their result suggests
strongly that human vision employs a reconstruction
strategy more sophisticated than separate submosaic re-
construction. Rather, it seems to take advantage of cor-
relations that exist across the responses of different cone
classes.

Based on their result and the earlier work of Will-
iams et al., we became interested in developing a nor-
mative computational model for reconstruction that could
integrate information across cone classes. We outline our
approach in the next section.

Statistical Decision Theory Approach

Our approach to trichromatic reconstruction is to apply
Bayesian decision theory. The Bayesian approach pro-
vides a general prescription for how to use all of the
information in a data set (e.g. the ensemble of photore-
ceptor responses) to estimate the values of a set of un-
known parameters (e.g. the image intensities in each
color band at all locations). Prior information about the
parameters is expressed as a probability distribution. If
we are trying to estimate parameters described by the
vector x, then the prior information is given by the prob-

ability density p(x). The relation between the parameters
x and the data y is also expressed as a probability den-
sity p(y | x), often referred to as the likelihood. The like-
lihood is essentially a forward model of the data
acquisition device and is generally readily specified.
Given the prior p(x) and the likelihood p(y | x), the prob-
ability of any set of the parameter values, given the data,
is computed using Bayes rule

p(x | y) = C p(y | x) p(x) (1)

where C indicates a normalization constant that depends
on the data y but not on the parameters x. The distribu-
tion p(x | y) is referred to as the posterior. The posterior
gives the probability that the parameters x generated the
data y. The posterior expresses what is known about the
parameters given the prior and the data.

To go from the posterior to an actual parameter esti-
mate we need to specify a loss function L x̃ ;x). This func-
tion specifies the penalty for choosing x̃  when the ac-
tual parameters are x. Given the posterior and a loss func-
tion, we may compute the expected loss corresponding
to any estimate x̃ . This is called the Bayes risk and is
given as

  R(x|y) = L(x;x)p(x|y)dx
x

. (2)

The estimate x̃  is chosen to minimize the Bayes
risk. See Berger15 for a general discussion of Bayesian
methods.

Bayesian estimation provides a principled way to
choose an optimal estimate. As a practical matter, a num-
ber of difficulties can obstruct its use. First, it may be
difficult to specify a prior distribution that adequately
captures what is known about the structure of the pa-
rameters. In the case of trichromatic reconstruction, the
prior must specify how likely it is that any given image
will occur. Second, it may be difficult to specify a loss
function that captures how costly errors of various types
are. Freeman and Brainard16,17 consider loss functions
in detail. Finally, it may be computationally difficult to
minimize the Bayes risk once the prior, the likelihood,
and the loss function are specified. For the case of
trichromatic reconstruction, however, it has been pos-
sible to make progress using the Bayesian approach.

Brainard18 provides a formal description our trichro-
matic reconstruction algorithm. Space limitations require
that here we only provide a qualitative description. To
develop a prior distribution for images, we wanted to
incorporate two simple facts about natural images. First,
the average power spectrum of natural images falls off
rapidly as a function of spatial frequency.19,20 Second,
the signals in different color bands are positively corre-
lated.20 These two facts can be described probabilistically
by assuming that images are drawn at random from a
multivariate Normal distribution with known mean and
covariance. This class of prior does not capture all of
the regularity in natural images. Random draws from
such priors appear like military camouflage: they con-
tain no edge-like structures. Compared to the simple as-
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sumption that the image is band-limited, however, Nor-
mal priors are quite expressive.

It is straightforward to specify the likelihood for the
sampling problem. Once the spectral sensitivities and
locations of the photoreceptors are known, it is possible
to compute the expected response of each photoreceptor
to any given image. To convert this deterministic com-
putation into a probability distribution, we assume that
the photoreceptor responses are subject to independent
Normally distributed random noise. Thus the likelihood
is also characterized by a multivariate Normal distribu-
tion with known mean and covariance.

Given Normal prior and likelihood, it may be shown
that the posterior is also Normal. Normal distributions
have the attractive feature that they are unimodal. Thus
the Bayes risk for most reasonable loss functions is mini-
mized by the posterior mean. For our problem, an ana-
lytic expression for this mean exists and it is a linear
function of the photoreceptor responses. Thus the Baye-
sian approach leads to a linear reconstruction algorithm
that combines information from all three photoreceptor
classes. The reconstruction algorithm is not, however,
shift invariant and is not equivalent to filtering in the
frequency domain.

We have performed a number of calculations using
the Bayesian approach to reconstruction from samples.
Brainard and Williams21 simulated the performance of
the method for the human photoreceptor mosaic. In con-
trast to separate submosaic reconstruction methods, the
Bayesian algorithm is able to predict the low apparent
contrast of the red and green splotches observed by Wil-
liams et al. Interestingly, it also predicts that luminance
splotches should be perceived when high contrast chro-
matic gratings are viewed at spatial frequencies of about
30 cycles per degree. Sekiguchi, Williams, and Brainard
have observed hints of such splotches in an experiment
whose primary purpose was to measure sensitivity to
chromatic gratings.22

Second, Brainard simulated the performance of the
algorithm for a regular one dimensional dichromatic
mosaic.18  These simulations indicate that the type of
chromatic fringing illustrated by Figure 5 may be sub-
stantially reduced.

Finally, we have implemented the algorithm for a
Kodak DCS-420 digital camera and made qualitative
comparisons of its performance to that of commercially
used algorithms. In our judgment, the Bayesian method
reduces chromatic fringing more effectively than these
other algorithms. We will show examples of these re-
constructed images in our talk.

Summary and Discussion

Our interest in trichromatic sampling began with the ob-
servation that the human visual system is effective at
reconstructing images from the responses of interleaved
submosaics of retinal cones. In trying to understand how
this is possible, we cast the trichromatic reconstruction
problem in the form of a statistical decision problem:
given the responses of interleaved submosaics of sen-
sors and a model of the statistical distribution of images,

what image estimate minimizes the expected reconstruc-
tion error? This line of thinking led to a method that may
be applied to color CCD camera data. In this paper, we
summarized this analysis and its performance.

Trichromatic reconstruction techniques have also
been developed in the engineering community.23,24  These
share with our work the feature that responses from the
entire sensor mosaic are used jointly in the reconstruc-
tion process. Our work differs in that it starts with ex-
plicit description of the structure of natural images
(expressed as the prior) and of the sampling device (ex-
pressed as the likelihood). Although we have emphasized
the trichromatic aspect of the reconstruction problem, it
is worth noting that the method we have developed is
very general. It provides a recipe for designing optimal
reconstruction algorithms that handle irregular polychro-
matic sampling in the presence of optical blur and sen-
sor noise. Because the method tailors reconstruction
algorithms to the properties of the camera and the image
population, it can be used to compare how well different
camera designs will perform. For example, the number
of sensor classes, their spectral sensitivities, the relative
numbers and placement of sensors in each class, and the
amount of optical blur are all design parameters of CCD
cameras. Our method could be used to compare the per-
formance of different cameras when signals from each
are reconstructed optimally.

Other trichromatic reconstruction algorithms23,24

employ heuristics that attempt to identify the location
of edges as part of the reconstruction process. It may
be that the good performance exhibited by human vi-
sion is driven in part by taking advantage of similar
information. Our algorithm is linear and does not per-
form any explicit segmentation of the image. This is a
consequence of the fact that our priors do not incorpo-
rate information about the spatial structure of natural
objects, many of which are delineated by edges. Our
results show that it is worthwhile to exploit the simple
facts about natural images that are currently at our dis-
posal. We close by noting that our approach can be ex-
tended as we learn to describe more completely the
structure of such images.
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