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Abstract. Pigment classification of paintings is considered an
important task in the field of cultural heritage. It helps to analyze
the object and to know its historical value. This information is
also essential for curators and conservators. Hyperspectral
imaging technology has been used for pigment characterization
for many years and has potential in its scientific analysis. Despite its
advantages, there are several challenges linked with hyperspectral
image acquisition. The quality of such acquired hyperspectral
data can be influenced by different parameters such as focus,
signal-to-noise ratio, illumination geometry, etc. Among several, we
investigated the effect of four key parameters, namely focus distance,
signal-to-noise ratio, integration time, and illumination geometry on
pigment classification accuracy for a mockup using hyperspectral
imaging in visible and near-infrared regions. The results obtained
exemplify that the classification accuracy is influenced by the
variation in these parameters. Focus distance and illumination angle
have a significant effect on the classification accuracy compared
to signal-to-noise ratio and integration time. c© 2021 Society for
Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2021.65.5.050406]

1. INTRODUCTION
Hyperspectral Imaging (HSI), also called imaging spec-
troscopy, is a non-invasive imaging technique that generates
a spatial map over continuous spectral bands, producing a
three-dimensional datacube i.e., two spatial and one spectral
dimension. On the basics of data acquisition methods, a
spectral data can be created using three general approaches
namely, whiskbroom (point scanning), pushbroom (line
scanning), and snapshot (single-shot). The line scanning
approach is widely adopted because of its higher Signal-
to-Noise Ratio (SNR) and flexibility [1]. In this approach,
the object is scanned line by line at a time, it uses an array
of detectors to scan over a two-dimensional surface using
a detector perpendicular to the surface of an object being
scanned [2, 3]. HSI technology which was initially developed
and used for remote sensing applications [4] has later been
used in different application domains such as agriculture
[5], medical [6], forensic [7], biomedical engineering [8],
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Cultural Heritage (CH) [9], etc. Materials with distinct
spectra as each element emits a distinctive set of discrete
wavelengths according to its atomic andmolecular electronic
structure [10].

With the development of sophisticated hardware and
software, this imaging technology is being used more
frequently for the analysis of work of art [11, 12]. Pigment
classification of artwork materials such as paintings is of
importance for conservators to do a precise analysis of an
object andunderstand its historical value [13, 14].Despite the
significant utilization of HSI in this field [15–18], there are
still important challenges in terms of delivering high-quality
spectral data. Defining image quality is a complex subject.
For three-channel (RGB) imaging, quality criteria are often
subjective as it reflects the visual perception of a human
observer [19, 20]. However, for HSI it is not only limited
to perceptual quality, as it captures data beyond the visible
range and is used for a wide range of applications, therefore
it is difficult to generalize the definition of quality. Several
definitions of spectral quality can be found in the literature
and most of them depend upon the application. Fryskowska
et al. [21] define quality as the suitability of a specific dataset
for a specific purpose. This is more appropriate for spectral
imaging in general and thus for pigment classification, the
obtained spectral data will be considered to have high
quality if the classification accuracy is high. From the
perspective of image quality in spectral imaging, most of
the research work has been focused on the remote sensing
application [22], where the acquisition ismade from satellites
and aircrafts with significant ground sample distance. The
sun is a primary source of illumination; the scattering and
absorption of sunlight by different layers of the atmosphere
can result in intensity modifications and spectral variations,
resulting in degradation of obtained data quality. To deal with
such degradation, many algorithms have been developed,
for example, correction of atmospheric interference [23].
However, for CH applications, the acquisition is carried out
in a close range and the quality of obtained data depends
upon parameters of the HSI system such as illumination
geometry, the focus of optics, sensor integration time,
and SNR [18, 24]. Although instrument calibration is an
essential step to obtain valuable and relevant results from
HSI, however, more of these parameters are quantified by
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device manufacturers and, therefore, are not considered in
this paper.

In an artwork, the pigments used are usually mixed, i.e.,
one or more pigments are mixed with a binder such as oil,
egg tempera, gum, etc., and therefore have heterogeneous
structures that can have a significant effect on gloss levels.
For example, mixture of some pigments, or paintings with
varnish layers can cause specular reflection, especially due
to the angle of illuminations [25], which will further
affect the spectral accuracy and result in incorrect pigment
classification. The illumination used is an important factor
in imaging. A study done by Toque et al. [26] showed that
the spectral reflectance obtained usingmultispectral imaging
of a painting was influenced by the lighting conditions.
Intensity, type of illumination, and angle of incidence were
key elements that influence the resulting data. In a painting,
surfaces are often uneven, therefore acquiring images at
an optimal focus distance can be a difficult task. Hence,
it is important to explore how this influences the obtained
spectral data and classification accuracy.

In CH applications, objects are sensitive to temperature.
Any object exposed to an illuminant for a longer time
during acquisition can result in a change in the material
property due to the heat generated by the illuminant,
causing significant damage to the object. One possible way
to minimize this effect is by increasing the speed of the
acquisition. Higher integration time also increases the noise
level in the data. It is very common to use silicon-based
detectors, such as a charge-coupled device (CCD) in VNIR
HSI systems. Such sensors have lower sensitivity at the two
ends of wavelength in the VNIR region, i.e. near 400 and
1000 nanometers (nm), resulting in a noisy spectrum in
this region. Thus, it is important to investigate how the
reconstructed spectrum of artwork materials differs from
their original when there is variation in imaging parameters.
Therefore, the objective of this research work is to investigate
the effect of imaging parameters such as focus, integration
time, SNR, and illumination geometry on the classification
accuracy of pigments. The rest of this paper is structured
as follows, Section 2 describes the state of the art for
image acquisition parameters, and it summaries how these
parameters can affect the overall quality when used with the
HSI systems for CH applications. Object details, imaging
technology, and the experimental framework used are stated
in Section 3. Section 4 covers the result with discussions.
Finally, Section 5 presents conclusions followed by future
work.

2. STATE OF THE ART
In a digital imaging system, the acquisition stage can be
considered as an essential component. For acquisition of
high-quality digital data, several acquisition parameters need
to be addressed and controlled. Digital image capture is a
function of the light source, reflective surface, distance, the
angle between the device, the surface, and the illuminant.
The optical resolution, noise, depth of field, integration time,
illumination, etc. are some of the important acquisition

parameters [27, 28]. These parameters are linked to quality
attributes such as sharpness, color, tonality, and resolution,
and can influence the overall quality of the captured data. In
an imaging device with a low depth of field, the objects at
different depths from the camera may appear out of focus if
they are away from the focus plane [29, 30]. When capturing
CH objects, it should be a sharp focus across the entire
object being captured, but depending upon the depth of
field and object irregularities, it can result in variation in
image sharpness resulting in a blurry image and consequently
degrading the quality [31].

Illumination is an important factor that often influences
image quality attributes such as color reproduction and
texture. During an acquisition, if the object is overexposed,
the image will be brighter, and the details of the highlights
in the scene will be lost, while on the other hand if
the exposure is insufficient, the details in the shadows of
the scene will be difficult to distinguish. Loss of image
details can reduce the usefulness of the acquired images
in CH documentation. Accurate color reproduction is
an essential requirement for documentation and study of
artworks [32–34] e.g., monitoring the fading phenomena and
studying color change due to removal of the varnish layer
[35, 36]. Image acquisition parameters mentioned above can
be more or less important depending upon the application
and objective of imaging. Different imaging technologies can
be used for image acquisition, allowing more or less similar
acquisition parameters. These imaging technologies can be
grouped in multi-band, multispectral, and hyperspectral
depending on the number of bands selected over a given
spectral interval and on their bandwidths.

Numerous studies have shown the successful use of HSI
in the study and analysis of CH artefacts [9, 25, 37, 38].
However, the image acquisition of artworks using HSI has
several issues for acquiring high-quality data [39–41] and it
involves a number of calibrations and corrections steps to
obtain an accurate spectral data [24, 42, 43]. Kubic et al. [25]
discussed some problems of HSI acquisition of a painting.
Depth of field is also crucial for close-range HSI, particularly
for artwork such as paintings that are often warped or
have uneven surfaces. Thus, acquiring spectral data at the
optimum focus can be challenging. Qureshi et al. [41]
discussed few challenges involved in the acquisition and
processing of HSI for documents. SNR, integration time, and
illumination are the most highlighted imaging parameters
that influence the quality of HSI data. Pillay et al. [24]
have addressed similar parameters and the usefulness of
filters, such as equalization and polarizing filters, in the HSI
acquisition workflow that can affect the overall data quality.

To gain a better understanding of spectral imaging
devices and analyze how they influence data reliability for
different artworks, working group 1 of the EU COST-Action
TD1201, Color and Space in Cultural Heritage (COSCH)
(website: http://www.cosch.info/) initiated a round-robin
test that was carried out by nineteen institutions across
Europe for five different types of objects using both
multispectral andHSI [17]. It addresses various issues related
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to instrumentation, data collection, and post-processing over
the accuracy and reliability of data. The resulting data was
affected (error in spectral alignment, noise, spatial distortion,
etc.) by various aspects, such as device configuration,
acquisition environment, and methods of data processing,
and this could further have an important effect on pigment
classification. MacDonald et al. [44] performed a quality
assessment of Russian icon digitization, it was one among five
different objects used in theCOSCHproject. They found that
the obtained data was degraded due to specular reflections
from both glossy painted and metallic gold areas of the
icon’s surface indicating the control over the illumination ge-
ometry. The imaging system used and workflows employed
by the participating institutions varied widely, including
camera specifications, illumination, imaging geometry, and
file formats. It also highlighted that there is a strong need of
guidelines for the spectral imaging workflow.

Generally, halogen lamps are used as an illumination
source due to their continuous spectrum of light, from ul-
traviolet to mid-infrared region, i.e., 350–3400 nm. Halogen
lamps emit significant levels of electromagnetic radiation,
a lot of energy is converted into heat. Organic materials
are more sensitive to heat, moderate heat can change the
properties of varnish affecting the glossiness of an object.
Artwork exposed under excessive heat for a longer time
can have a destructive impact, for instance, melting of the
varnish or even the paint layer [45]. This can be minimized
by following the guidelines, which suggest the use of a
proper illumination level (150–200 lux for oil paintings and
50 lux for manuscripts and other paper-based artworks) and
other environmental factors for sensitive CH objects [46, 47].
An illumination source that raises the surface temperature
of an object more than four degrees Fahrenheit (257.6 K)
in the total acquisition process, is not recommended [48].
Fundamentally light-induced damage is determined by the
accumulated total energy incident on material i.e. lux hour
rather than the intensity of the incident light. Illumination
used in an imaging device setup for an art object can be used
either with low-intensity light for a longer time or with high-
intensity light for a short time; in both conditions, we may
achieve similar SNR. Nevertheless, this reciprocity principle
might not always hold for every work of art, for example,
some pigments in a painting, and can be independent of time
period [49]. However, due to the total energy incident on an
object, higher intensity light is preferred [38].

Whetton et al. [50] evaluated the effect of camera height,
angle, integration time, and distance between the illuminant
and the object on the SNR for wheat plant canopy captured
with an HSI system and found these parameters to have
a high influence on the spectral quality. A noisy spectrum
was obtained when imaged with low integration time and a
larger distance between an illuminant and the object. Due to
the acquisition setup similarity (i.e., close range), we assume
these parameters might also influence the acquisition of CH
applications. Likewise, Wang et al. [51] also mentioned focus
and integration time as factors influencing spectral image
quality. For acquisition of images of fruits using HSI, it was

difficult to preserve the focus due to nonuniform fruit size
(parameters comparable to CH objects), resulting in either
too bright or too dark areas within the fruits making feature
extraction a difficult task. To solve this issue, the author
recommended a few steps such as changing the orientation
of scanning, adding additional lamps, and using a multi-step
reflectance target.

Researchers often prepare mockups using specific pig-
ments mixed using binders [52, 53]. These are modern pig-
ments having similar properties to historical pigments from
different periods. Generally, shiny materials were used in
traditional Asian arts and imaging such objects often causes
serious challenges as the intensity of the specular reflection
component is usually much higher than that of the diffuse
reflection, producing a saturated image. Light scattering is
dependent upon the surface properties such as roughness,
reflective binders, varnishes, etc., and canmodify the spectral
reflectance behavior [54, 55], it can also cause specular
reflection especially on varnished or glossy paintings. Even
in controlled laboratory conditions, non-homogeneously
illuminated paintings result in highlights and shadowy areas
and degrade the overall quality below a useful level.

In artwork analysis, one of the important tasks is pig-
ment identification [26, 38, 56, 57]. For pigment classification
using HSI, the two common approaches are supervised and
unsupervised methods. Researchers mostly use supervised
classification [58, 59], where they compare the obtained
spectrum with a reference spectrum that is mostly created
within a Region Of Interest (ROI) and stored as a spectral
library, whereas, in an unsupervised method, it looks for
spectral clustering of pixels [59, 60]. One of the most
commonly applied classification algorithms using data from
HSI is the Spectral Angle Mapper (SAM) [61, 62]. This
method considers the angle formed between the spectrum
of the reference and the test image at each pixel, where
smaller angles represent a closer match of the spectrum.
Each spectrum is treated as a vector in an N -dimensional
space where N is equal to the number of spectral bands.
Few other algorithms used for supervised classification are
spectral correlation mapper [62], maximum likelihood [63],
spectral information divergence [64], and spectral gradient
mapper [65]. It is essential to assure that the spectral
data acquired from the artwork is accurate to achieve the
precise classification of thematerials/pigments present in the
artwork. The HSI acquisition parameters can influence the
quality of the spectral data, and the objective of the presented
research is to study the link between them.

3. MATERIALS ANDMETHODS
In this section, we describe the test object and the hyperspec-
tral image acquisition laboratory setup, followed by details on
the acquisition parameters. The classificationmodel and data
post-processing steps are also explained.

3.1 Test Object
Apigmentmockup [53] was used as a test object in this work.
The reason to choose this mockup as an object was because
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Figure 1. Pigment mockup used as test object. Labels for patches have been added here for description and are not part of the mockup.

Figure 2. The layout of HSI system used for the experiment. Illumination used was a 150 W halogen-based SmartLite 3900e produced by Illumination
Technologies, Inc., guided on the object via optical fiber. Illumination geometry is 45◦ - 0◦ - 45◦, here 0◦ implies camera angle with normal.

of its material and physical characteristics considering its
usefulness in CH. Powder pigments that are known to have
been used in the historic period (14th–18th century) were
mixed using linseed oil as a binder and applied over a
stretched canvas that were pre-primed using gesso. Patches
were made using different concentrations of seven pigments,
each weighed on a precision scale. The pigments were
Vermilion (V), Ultramarine Blue (B), Viridian Green (G),
Naples Yellow (Y), Gold Ochre (O), Kremer White (W),
and Novoperm Carmine Red (C). In the remaining part
of this paper, we will denote these pigments with their
abbreviations. Abbreviations in the capital and small letter
will be used to denote the concentration of mixtures. For
example, the letter VB denotes that the ratio of mass is 1:1 for
pigments B and V. Similarly, Bv is 2:1 and Bvy means 2:1:1. A
picture of the pigment mockup is shown in Figure 1.

3.2 Experimental Setup
Hyperspectral images were obtained in a laboratory environ-
ment using the line scanner HySpex VNIR-1800 developed
byNorsk ElectroOptikk [66], consisting of an actively cooled
and stabilized complementary metal-oxide-semiconductor
detector. The spectral data obtained covers a spectral range
from 400 to 1000 nm with 186 spectral bands having
a spectral sampling of 3.26 nm. The scanning speed is
automatically synchronized with the integration time which
is manually set on the device using the camera interface
software HySpex GROUND. In this experiment, a 30 cm
cylindrical lens was used that captures 1800 spatial pixels
across a line with a field of view of approximately 86 mm.

As shown in Figure 2 the experiment was conducted in
a laboratory environment and a translation stage setup was
used where the pigment mockup was placed on the moving
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platform. The Spectralon R© multi-step reference target [67]
consisting of four adjacent panels with reflectance values
99, 50, 25, and 12% and a ColorChecker [68] was also kept
along with the test target at the same horizontal level in every
scan as shown in Figure 3 and were perpendicular to the
focal axis of the camera [69]. The reference target is used
for computing the normalized reflectance at the pixel level.
The objective of using a ColorChecker was to validate the
obtained spectral data.

3.3 Methodology
Setup as shown in Fig. 2, the optimal focus is obtained at
a distance of 22 cm from the camera as claimed by the
HSI device manufacturer. We will consider this distance
as a reference focus point (Gnd_T) throughout this paper.
For focus, we choose to change the distance away from the
camera with a step size of 2 cm from Gnd_T. Due to the
arrangement of the setup, it was convenient to move the
camera in the direction as shown in Fig. 2. The Number
of scans (N ) was changed for pushbroom HSI, which is
scanning every single line multiple times and taking an
average before moving to the following line. This procedure
improves the SNR ratio by a factor of N . For a work of art
reducing the measurement time as much as possible reduces
the exposure to the radiation during acquisition of HSI
data which further helps in safeguarding the analyzed work.
Therefore, for SNR, acquisition with a value of N equal to 1,
2, 4, 6, and 8 was carried out and it was done by giving input
directly to the software provided by device manufacture.
Orientation including other acquisition parameters was kept
as specified in Fig. 2.

Integration time is another important attribute of image
acquisition. Acquiring an image at a lower integration time
will make the acquisition process faster and lower the
exposure of an object to the illumination. There is a trade-off
between light intensity and integration time, as it is important
to keep the art object less exposed to high light intensities.
Therefore, for this part of the experiment, we changed
the integration time from the minimum (allowed by the
device software i.e., 2150 µs) to a certain higher value (i.e.,
12,500 µs) so that its pixels have saturation values between
85% and 10%. The scanning was conducted with SNR equal
to 2. In the last part of the experiment, we studied the
influence of illumination angle on the acquired spectral data
for classification accuracy. The standard configuration for
scanning is at 0◦, 45◦ for the camera and illuminant, respec-
tively.We changed the angle of the illuminant to 30◦ and 60◦.

Detectors have low sensitivity at low and high extremes
of the spectral range and the illumination intensities near
these regions are weak as well, thus resulting in the adding
of noise in the spectral data. One possible way is to use an
equalization filter. This helps to improve the SNR mainly
towards the extremes of wavelength at the same time it also
limits the power efficiency of the light source in the central
region of the detector and might need a longer integration
time. We used an equalization filter on the device and the
acquisition of the pigment mockup was carried out at an

Figure 3. Acquisition arrangement of pigment mockup with the
Spectralon R© multi-step reference target to the left and ColorChecker on
the right. Numbering for ColorChecker is added manually here in this
figure for reference.

illumination angle of 45◦ to observe its effect on the obtained
spectral data.

3.4 Data Processing
The obtained raw hyperspectral data require post-processing
to acquire calibrated normalized reflectance data. Radiomet-
ric calibration was carried out where the raw digital number
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data from the camera was corrected for non-uniformity
and dark offset and then converted to sensor level absolute
radiance value using the standalone post-processing software
HySpex RAD. Finally, the reflectance factor for the pigment
mockup was calculated using the known reflectance value
of the reference target. Calculation is shown in Eq. (1),
where, RObj(λ) is the reflectance of an object, RRef_t (λ) is the
reflectance of reference target, rObj(λ) and rRef_t are sensor
absolute radiance values for the object and reference target,
respectively. The reference target surface might have some
variation in pixel value, so we averaged the values from
100 pixels for each line scan and calculated the reference
target radiance value. Due to the small distance between the
sensor and the object, we assumed that the path radiance
effect to be negligible. The obtained spectral data was then
cropped to exclude the ColorChecker and the reference
target. The modification was made using the open-source
software Spectralpython [70].

RObj(λ)= RRef_t (λ)
rObj(λ)

rRef_t (λ)
(1)

α = cos−1

nb∑
i=1

tiri√√√√ nb∑
i=1

ti2
√√√√ nb∑

i=1

ri2
. (2)

For classification, a supervised approach using the SAM
algorithm was applied with a default threshold angle of
0.1 radians. The spectral angle between an image pixel and
reference spectrum is given by Eq. (2), where α is the
spectral angle in radians, ti is the image spectrum, ri is the
reference spectrum and nb is the total number of bands.
We defined the training region for each of the pigment
patches, i.e. an ROI of approximate size equal to that of
the patches (25× 25 mm) was considered, and the regional
mean spectrum from these patches were stored and used
as the reference spectrum. The classification accuracy was
calculated with the statistical parameters, i.e., confusion
matrix [71, 72] using the commercial remote sensing
software Environment for Visualizing Images (ENVI). The
overall methodology is illustrated using a block diagram in
Figure 4 and Table I shows the summary of the acquisition
parameters.

Figure 4. Hyperspectral data processing workflow diagram.

Figure 5(a) shows the pigment patches and Fig. 5(b)
illustrates its corresponding image after classification. Differ-
ent colors in Fig. 5(a) indicate pixels for the particular patch.
Accuracy is evaluated as the ratio of classified pixels to the
total pixels in a given ROI polygon. As an example, the result
of the classification of four patches under optimal acquisition
conditions is shown in Table II.

4. RESULTS ANDDISCUSSION
In this section, we will look in detail at the spectrum
and classification accuracy obtained for the mockup and
ColorChecker by varying the quality attributes, i.e. focus,
SNR, integration time, and illumination angle.

4.1 Focus
Figure 6 shows the spectrum of three different patches for
varying focus distance from 0 cm (Gnd_T) to 16 cm away
from the initial position of the camera. For the patch O
(Fig. 6a) there are slight changes in the magnitude of the
spectrum mainly in the range between 600 and 1000 nm.
Whereas for the patchOB (Fig. 6b) and patch voB (Fig. 6c)we
can see a spectral variation in both visible and near-infrared
regions. The spectrum is plotted for a small region within
the given patch, i.e., averaging 10× 10 pixels, each patch is

Table I. Acquisition parameters. Variable indicates the different values at which acquisition was done and fixed parameters imply the condition that was constant for each set of
experiments; I is illumination measured.

Acquisition parameters Variables Fixed parameters

Focus distance (F) {Gnd_T, 2, 4, 6, 8, 10, 12, 14, 16} cm SNR= 2, IT= 12,500 µs, A= 45◦, and I= 3200 lux
SNR {N = 1, 2, 4, 6, 8} F= Gnd_T, IT= 12,500 µs, A= 45◦, and I= 3200 lux
Integration Time (IT) {2150, 2500, 5000, 7500, 10,000, 12,500} µs F= Gnd_T, SNR= 2, A= 45◦, and I= 3200 lux
Illumination Angle (A) 30◦, 45◦ and 60◦, and I= 2375, 3200 and 4700 lux F= Gnd_T, SNR= 2, and IT= 12,500 µs
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Figure 5. (a) Pigment patches, single pigment O; Vb patch is a mixture of two with concentration 2:1; voB mixture of three with concentration 1:1:2; OB
contains two pigments with equal concentration. (b) Classified image, where color indicates the class that each pixel has been classified to.

Table II. Classification accuracy: total number of pixels classified correctly for each patch within the selected ROI.

Patch O Patch Vb Patch voB Patch OB
Red Green Blue Yellow

Patch O (Red) 80,850 (99.98%) 0 0 0
Patch Vb (Green) 0 73,223 (99.90%) 0 0
Patch voB (Blue) 01 0 68,337 (93.40%) 30,739 (33.50%)
Patch OB (yellow) 0 0 2159 (2.95%) 45,812 (49.93%)
Unclassified 14 (0.02%) 74 (0.10%) 2668 (3.65%) 15,209 (16.57%)

Total No. of Pixels 80,864 73,297 73,164 91,760

approximately 500× 500 pixels. In general, we can observe
that there is a change in the magnitude of the spectrum, and
the shape of the spectrum is moreover constant.

It was also seen that variation in magnitude of spectrum
change with the number of pixels chosen to average, in fact,
data plotted from sub-areas in different places within the
same patch showed high variations as shown in Figure 7(a).
This is mainly because of variation in pigments mixture
concentration and nonuniformity in the applied layers. The
effect of this variation and nonuniformity is also seen in
classification, as shown in Fig. 5(b), not all patches are equally
classified and thus have different classification accuracy.
More pixels are classified in patches with a single pigment
and or homogeneous texture compared to that of having a
rough texture. Liang [38] also mentioned that the ratio of
pigment concentration to bindingmediumaffects the peak of
the spectrum. This argument can be supported by observing
the spectra of ColorChecker patches as shown in Fig. 7(b),
we can observe that there is a slight variation in magnitude

towards the higher wavelength but still the overall shape of
the spectrum is similar.

The result for the pigment classification overall accuracy
for the givenmockup is shown in Figure 8. It is observed that
the classification accuracy initially increases as an object gets
further away from the camera starting from the optimal focus
point and after some points, it starts to decrease. It is because
as it moves away from an object, pixels become slightly out of
focus and therefore blurred (smoothed), and more adjacent
pixels are averaged. As the camera moves further away from
the pigment mockup, the camera is outside the optimal focus
distance and depth of field, thus photons from the pigment
patch area are no longer hitting the same pixels and start to
hit adjacent pixels and affect the obtained spectrum.

4.2 SNR
Spectrum for various SNR levels (frame averaging) for three
different patches are shown in Figure 9. The three patches
shown are a patch with a single pigment (Fig. 9a), a mixture
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Figure 6. Spectrum for different pigment patch at different focus distance; (a) Patch O, (b) Patch OB, and (c) Patch Vow.

Figure 7. (a) Spectrum for pigment patches obtained at multi-point; for patch O (in black) and patch Vow (in blue), variation is mainly from 550–1000 nm
whereas, for patch OB (in red), variation is over the entire wavelength range with slightly higher towards 1000 nm; (b) Spectrum for ColorChecker blue
patch (number 23) at the different focus distance.

of two (Fig. 9b), and a mixture of 3 pigments (Fig. 9c). To get
a smoother spectral curve, we used a window size of 10× 10
pixels i.e., averaging the spectrum over 10 adjacent pixels. It
is observed that the change in the spectrum for different SNR
levels was lower for all patches over the entire wavelength
range. There is no recommendation or standard practice for
considering an exact number of pixels to plot the average
spectrum. However, experts recommend focusing on a small
section of paintings by using between 6 and 18 pixels. When

the size of this window was changed to 1× 1 pixel, we notice
a variation in spectrum i.e., noisier which decreased with a
higher value ofN , a result for a patch O is shown in Fig. 9(d).
Spectrum is plotted with an offset in normalized reflectance
for better visualization.

It can be observed that there is a variation in the
spectrum mostly in the regions of 400–500 nm and 850–
1000 nm and as SNR increases the spectrum become
smoother (less variation). The variation seen is for the reason
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Figure 8. Overall classification accuracy for pigment mockup at the
different focus distances.

that exposure in this region requires a longer time compared
to mid-region wavelength to overcome the effect of lower
quantum energy (sensitivity) of a detector. One possible
way to improve this is by using an equalization filter, as
it attenuates the light in the mid-region and improves the
relative SNR at both ends region of the wavelength range.
Figure 10 illustrates the spectrum obtained after using an
equalization filter for three patches and the ColorChecker
(white patch #24). The spectrum obtained with and without
a filter is shown by a solid and dotted line, respectively. It
can be seen that, towards both ends of the wavelength range,
the spectral variation decreases when the equalization filter
is used. The experiment was performed at a distance of 30 cm
from the camera to the mockup and this close distance could
be one reason for obtaining less noisy data. Classification
accuracy for pigment mockup for the different SNRs did
not differ much, and the results are shown in Figure 11,
there is only a change in obtained value after the second
decimal.We also computed the classification accuracy for the
ColorChecker, and it was above 99% for all 24 patches, this
is because the standard ColorChecker patches have smooth
spectral curve characteristics.

4.3 Integration Time
For different integration times, as shown in Figure 12, the
magnitude of the spectrum for all three patches did not
show any significant changes. A slight shift can be noticed
for patches OB (Fig. 12b) and Vow (Fig. 12c) in the range
of 800–1000 nm. It implies similar accuracy in HSI data
can be obtained with reduced measurement time, i.e., less
exposure of an object to radiation. As shown in Fig. 12(d),
the spectrum obtained from the ColorChecker for different
integration times were also identical. During the acquisition,
the illumination intensity varied such that pixels in the field
of view have saturation values between 85% and 10%, and the
spectrum was plotted by taking an average of 10× 10 pixels.
However, for the non-homogeneous paintings, neighboring
pixels could have different characteristics. Thus, obtaining
an average over a bigger window size would not be possible,

so that the result might be affected. The classification
accuracy is shown in Figure 13, which illustrates that for
the variation in integration time, the classification accuracy
is moreover the same. It can also be observed that for
variation in either of parameters SNR or integration time,
similar classification accuracy can be obtainedwith sufficient
illumination level.

4.4 Illumination
To analyze the effect of illumination angle on the spectral
data, the acquisition was done with focused illuminants
at three different angles. The result obtained is shown in
Figure 14. It illustrates that there is a shift in the spectrum
in the range of 600–1000 nm for patch O and Vow, but this is
not the case for Vb and OB. The reason for this is assumed to
be the non-homogeneity in the surface of pigment patches.
It can also be noticed that at an angle of 30◦ and 45◦ there is
very little variation in the spectrum for all four cases whereas,
for O and Vow, there is a slightly high shift in magnitude at
60◦. Classification accuracy, as shown in Figure 15, is higher
at 45◦ and changes at a different angle of illumination.

4.5 General Observation
Patches in a pigment mockup are separated from each other,
which is not common in real paintings, as elements in
the paintings are normally close to each other. Adjacent
pixels of different pigments can be misclassified as the
spatial resolution changes with focus distance and can
change the classification result. A shift in the spectrum
does not have any significant effect on the classification
accuracy for the attributes SNR and integration time, but
this could be important for other applications such as fading
or applications that have different concentrations of the
same pigment. The influence of SNR and integration time
can be more visible if the distance between the camera
and object is increased, which could be the case when
scanning larger paintings. For larger objects, a rotational
stage is used which introduces geometrical errors. An
experiment can be conducted in the future to see how
this geometrical distortion affects the classification accuracy.
Despite having optimal instrumental setup and calibration
workflow, pigments surface non-homogeneity in artwork
arising from the brushstroke, various thickness layers,
compositions in pigments, etc., can affect the obtained
data, resulting inmisclassification and identification. Further
experiments need to be conducted to analyze various
factors constituting non-homogeneity on pigment surfaces
in works of art, for example, thicknesses, textures, etc. and
correlating them with classification accuracy. The mockup
in our experiment was unvarnished, usually, paintings are
varnished in a real scenario and illumination geometry can
cause specular reflection on painting [73]. Berns et al. [74]
explained in detail about optics behind varnished paintings,
which states that the physical parameters of a varnish affect
its optical properties when applied to paintings. Experiments
with a new mockup addressing these limitations can be
conducted in the future to get a comprehensive result for
classification accuracy.
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Figure 9. A spectrum of different pigments patch for different SNR; (a) Patch O, (b) Patch OB, (c) Patch Vow, and (d) Spectrum for patch O with offset in
the normalized reflectance.

Figure 10. Spectrum for different pigment patches and the ColorChecker:
with and without an equalization filter. The letters O, Vow, and Bw
represent spectrum for pigment without equalization filter and letter with
underscore suffix EQ represents spectrum obtained using the equalization
filter.

5. CONCLUSION
Hyperspectral imaging is being used more frequently in
the cultural heritage field to study materials and their
distribution. The quality of the acquired hyperspectral
data is important to produce accurate and reproducible
spectral data for the analysis and documentation of a

Figure 11. Classification accuracy at different SNR values.

work of art. It can be influenced by different acquisition
parameters and is also dependent upon the attributes linked
to specific applications. In CH, pigment classification of
artwork materials, such as paintings, is of importance
for conservators for precise analysis of objects and their
historic value. Therefore, to understand how the acquisition
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Figure 12. Spectrum for different pigment patches and ColorChecker for different integration time; (a) Patch O, (b) Patch OB, (c) Patch Vow and
(d) ColorChecker blue patch (number 23).

Figure 13. Classification accuracy at different integration time.

parameters affect the quality of the obtained spectral data,
we investigated the influence of four key parameters, namely,
focus distance, signal-to-noise ratio, integration time, and
illumination geometry on pigment classification accuracy
for a mockup using hyperspectral imaging in visible and
near-infrared regions.

We observed that pigment classification accuracy is
influenced by a change in focus distance. Moving an object

Figure 14. Spectrum for different pigments patches and the ColorChecker
at three different illumination angles. The number in the legend represents
the angle of illumination.

away from the focus plane, pixels appear out of focus
resulting in a blurred image. Blurring acts as a low pass
filter and smooths edges and consequently increases the
classification accuracy, however, after a certain distance,
the classification accuracy starts to decrease. SNR and
integration time have less effect over classification compared
to focus. One possible reason for this might be due to less
noise in a close-range laboratory setup. The pigment patches
in the mockup have an uneven surface, which results in
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Figure 15. Classification accuracy at a different angle of illumination.

significant variation in the spectrum obtained at different
pixels within the same patch. Changing the illumination
angle changes the magnitude of the obtained spectrum to
some extent and also varies the classification accuracy. An
equalization filter can help to reduce the noise in the obtained
spectrum especially at two ends of the wavelength range in
the VNIR region.
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