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Abstract
A fast, spatially adaptive filter for smoothing colour images

while preserving edges is proposed. To preserve the edges, we use a
constraint that prohibits the increasing of the gradients in the process
of diffusion. This constraint is shown to be very effective in preserv-
ing details and flexible in cases where more smoothing is desired.
In addition, a filter of exponentially increasing diameter is used to
allow averaging non-adjacent pixels, including those separated by
strong edges.

Introduction
In imaging technology, noise is an integral part of the capturing

devices and the physical fluctuations therein. On a more fundamental
level, it is part of sampling a light signal that exhibits variations in the
number of incoming photons. The physics of sensors and photons,
as well as our ability to measure, means that some level of denois-
ing is essential. Noise removal is important whether it is in medical
imaging [1] where we are trying to make a diagnosis based on the
recorded image or in digital photography [2] where the focus is on a
pleasing visual result.

Mathematically, a noisy image is represented by a sum y= x+n,
where y is the captured image, x is the desired noiseless image and n
is noise [3]. Based on this formulation, we can think of noise reduc-
tion as a set of mathematical operations that aim to remove n from
y to recover an estimate of the true image x. Indeed, what differen-
tiates image denoising algorithms is the chosen set of mathematical
operations to recover the image x and the arguments stated for their
optimality.

When given a block of noisy pixels measurements, we might
say that an optimal algorithm reduces the variance of the pixel val-
ues and proceeds to smooth the block by replacing those values with
their average. A native averaging operation would indeed reduce the
variance of the block. Thus, therefore, being the most optimal so-
lution for the parts of the image that correspond to uniform regions
in the original scene. Representing the pixel values with the average
of their neighbours in a given block, image regions with edges and
texture would be rendered unrecognisable. The larger the block, the
less satisfying the result would be. In the previous decades, the focus
of image denoising algorithms has been on reducing image variabil-
ity while preserving edges and texture: an aim that has sprouted a
plethora of different algorithms (add references). Today, there are
many algorithms that preserve edges and other features while reduc-
ing noise, each with its advantages, disadvantages and computational
complexity.

In this article, we combine two different approaches to image
denoising. The first is the set of gradient domain algorithms that are
mathematically similar to the landmark work of Perona, Malik [4].
Local gradients of the image are analysed and image denoising is cast
as an iterative anisotropic diffusion process that prohibits smoothing
the image data in the direction of strong gradients. In this family
of algorithms, the permitted direction of smoothing is defined either
by the strength of the individual gradients or an eigenvector analy-
sis of the local tensor matrix. Unfortunately, these algorithms are
unable to diffuse similar image values that are far from each other
or separated by strong edges. The second set of algorithms searches

the image for blocks that are statistically similar and averages their
values. As an example of these algorithms, we consider non-local
means and the work of [5]. Non-local means searches the image in
a given sampling window for similar blocks that are then averaged
to obtain the denoised image. Similarly, the algorithm presented in
[5], stacks similar patches in a 3D-buffer and applies a filter in the
wavelet domain. We note that although generally very effective in
reducing noise, these algorithms will have problems with unique im-
age features that do not repeat [3].

To elucidate our contribution, we consider the example of an
image consisting of a black and white checker pattern with noise. In
such an example, gradient domain denoising algorithms would dif-
fuse the values inside each block separately. It would have been intu-
itive to average the pixels of the set of all the similar blocks to obtain
two distinct values: one for white and another for black. On the other
hand, non-local means would average the similar blocks but without
analysing the gradients. To harness the power of the two approaches,
we made use of the edge preserving constraint presented in [6, 7],
where image diffusion was permitted in directions that do not lead
to an increase in the local gradients. In their work,[6, 7], the authors
considered diffusion from, and to, the centre pixel in a 3× 3 block.
Diffusion in any given direction was permitted when it didn’t cause
the gradients to increase in the other directions. In this paper, we
keep this condition but we consider the diffusion from pixels outside
the core 3× 3 block. In the method section, we present a filter, of
an exponentially increasing size where the values of selected pixels
across the whole image can potentially be taken into consideration
resulting in effective and fast denoising.

Method
Condition for edge conservation.

An RGB-colour image is represented as a function I defined on
a rectangular grid in the plane with values (R,G,B) in [0,255]3. In all
our calculations, the pixel values are mirrored along the boundaries
of the image. Consider a source pixel Is = I(is, js), a target pixel
It = I(it , jt) and the neighbour pixel values of It , which we denote

In3 = I(it −1, jt −1),In2 = I(it , jt −1),In1 = I(it +1, jt −1),
In4 = I(it −1, jt), In0 = I(it +1, jt),
In5 = I(it −1, jt +1),In6 = I(it , jt +1),In7 = I(it +1, jt +1).

(1)

Diffusion of Is onto the target pixel It is controlled by watching the
change of the differences caused by a test diffusion. A temporary
target pixel value is computed I′t = dIs +(1− d)It where d = 0.3.
Diffusion from Is to It is admissible if

‖In− I′t‖
2−‖In− It‖2

d
≤ α (2)

for all n= n0,n1, . . . ,n7, where 0≤α . Condition (2) can be rewritten
as

d
∥∥Ps
∥∥2−2Ps ·Pn ≤ α (3)

where Pn = In− It and Ps = Is− It .
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Figure 1: The grid shows the anatomy of the filter. The numbers
indicate the non-zero elements of the generating kernels and the order
in which they are applied.

Combining several source pixels
Given a set of source pixels Is, s ∈ St . Let At ⊂ St be the set

of indices s such that diffusion from Is onto the target pixel It is
admissible. The new target pixel value is obtained by:

It + ∑
s∈At

γs Ps, (4)

where γs > 0 are appropriate diffusion factors with ∑s∈St
γs < 1. In

[7], only the neighbouring pixels with distance one from the centre
were used as source pixels. For each pixel It , we take a set St of all
pixels within some radius from It . Any pixel from St can now be
applied in the diffusion process, as long as its value does not breach
the constraint outlined in equation (3). If the radius is one pixel,
then the diffusion is identical to that described in [7]. Increasing the
radius has obvious advantages as more pixels would be considered.
Further, to allow closer pixels to influence the result of the diffusion
more, we could use a two dimensional Gaussian distribution. Intu-
itively allowing diffusion over longer distances would reduce noise
more effectively. Given the formulation of our constraint and consid-
ering all the pixels within a large radius is, however, computationally
very expensive. We address this by using a varying range convolution
process.

The varying range smoothing process
We define an iterative smoothing process. In each iteration we

use eight source pixels for each target pixel t. The eight pixels are
considered recursively. The source pixels in the first iteration are the
neighbour pixels St,1 = {n0,n1, . . . ,n7}. In the subsequent iterations,
the distances from the source pixels to the target pixel are doubled.
Figure 1 shows the locations of the source pixels in the first four itera-
tions. Here, the target pixel is marked as a black dot and the numbers,
0,1,2,3 correspond to the iteration number. For each iteration, we use
the diffusion formula (4) with γs = 1/8 in the vertical and horizontal
directions and γs = 1/16 in the diagonal direction.

Comparison with convolution methods
When there are no restrictions, that is At = St in each iteration,

the recursive process corresponds to a convolution filter with kernel:

G0 =
1

16

(
1 2 1
2 4 2
1 2 1

)
. The second step in an unrestricted process is

Figure 2: The effective filter after 7 iterations. The size of the filter
is doubled for each iteration. Therefore, the filter is very efficient in
smoothing large uniformly coloured areas.

Figure 3: The effective filter after 3 iterations repeated twice. The
kernel is G∗3 ∗G∗3. Notice the Gaussian like shape of the kernel.

equivalent to applying a convolution filter with kernel:

G1 =
1

16

 1 0 2 0 1
0 0 0 0 0
2 0 4 0 2
0 0 0 0 0
1 0 2 0 1

 .

The third step of the process corresponds to using a kernel G2 etc.,
where Gi is obtained from enlarging Gi−1. We enlarge Gi−1 by
adding a zero-row between each row and thereafter, adding a zero-
column between each column, which corresponds to an exponen-
tially growing kernel. Here, we underline that each pixel value is
considered individually, i.e. we don’t convolve the image with the
filter.

Two unrestricted iterations give effectively a filter with kernel:

G1 ∗G0 =
1

256


1 2 3 4 3 2 1
2 4 6 8 6 4 2
3 6 9 12 9 6 3
4 8 12 16 12 8 4
3 6 9 12 9 6 3
2 4 6 8 6 4 2
1 2 3 4 3 2 1

 .

Without restrictions, n iterations are equal to the single convolution
filter G∗n = Gn−1 ∗ · · · ∗G0. The coefficients of G∗n are:

G∗ni, j =

{
(2n−|i|)(2n−| j|)

16n , when|i|, | j|< 2n

0 otherwise.

Figure 2 shows the normalised graph of G∗7. The form of the filter
looks like a pyramid. Repeating the unrestricted process twice is
equivalent to a filter that is very similar to a Gaussian. Without any
restrictions on the diffusion, these filters will blur the image rapidly.

Complexity
A direct convolution with G∗n requires 16 · 4n− 8 · 2n + 1 cal-

culations for each pixel. Alternatively, one could build another filter
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of approximately the same size by repeating a 3×3 kernel 2n times.
That would take approximately 8×2n+1 calculations per pixel. The
latter would however be Gaussian and not directly comparable. Our
method uses 8n calculations for each pixel.

Weaker conditions
Removal of salt and pepper noise fails if two neighbouring pix-

els are affected. This is because condition (2) fails in the direction
between the two pixels. We add two weaker conditions.

Strong condition Diffusion I8→ I′8 along the direction i is blocked

iff s
∥∥Pd

i
∥∥2−2Pd

i ·P1
r > α for at least one r = 0,1, . . . ,7.

Medium condition Diffusion I8 → I′8 along the direction i is

blocked iff s
∥∥Pd

i
∥∥2−2Pd

i ·P1
r >α for at least two r = 0,1, . . . ,7.

Weak condition Diffusion I8 → I′8 along the direction i is blocked

iff s
∥∥Pd

i
∥∥2−2Pd

i ·P1
r > α for at least three r = 0,1, . . . ,7.

Results
Comparison with N.L.M.D.

In this section, we compare our method with the non-local
means denoising (NLMD) [8, 9]. To obtain the results of denoising,
using non-local means, the parrot image and the Lena image depicted
in figures 4a and 6a respectively, were uploaded to the NLMD-demo
website [10]. Furthermore, we use the demo algorithm available on
the site to add noise with standard deviation σ = 5 and σ = 10 to the
parrot image. Here we note that in contrast to the NLMD-method,
our approach does require knowledge of the noise level. The images
used were all 8-bits in the range 0-255. The results for the parrot
image are shown in figure 4, where we note that for α values 50 and
greater, the results obtained by the proposed algorithm are compara-
ble to those achieved by non-local means.

When more noise is added to the image, we find that the per-
formance of non-local means is slightly favourable. Additionally,
a large α value is required for the proposed algorithm to render a
comparable result. A numerical comparison between the different
settings, and methods, is provided in table 1, where we find that non-
local means is slightly better in terms of the peak signal to noise
metric.

To evaluate the algorithm in the presence of excessive noise we
add Gaussian white noise to the Lena image with σ = 30. Again,
we compare our results with those obtained from non-local means.
In this case, both algorithms perform well in removing most of the
noise but non-local means is better in some image regions, which is
reflected in the peak signal to noise metric tabulated in table 2. Here
we note that non-local means samples a larger window than that used
in our algorithm and it is designed to remove white noise.

Removal of salt & pepper noise
Having tested the performance of the method and its effective-

ness at removing white noise, we experimented with a different type
of noise, namely salt and pepper. Moreover, we explored the dif-
ferences between the strong, medium and weak conditions defined
in the weaker conditions subsection. Figure 7, depicts the result of
the method applied on a female portrait from the Kodak database
with salt & pepper noise added. The processing results are shown in
Figure 7b, Figure 7c and Figure 7d. From Figure 7b we notice that
all isolated colour dots are removed. In addition, Figure 7c clearly
shows that all isolated colour dot pairs are removed. In all the resul-
tant images, the original details are very well conserved.

Varying the diffusion factor
It is well understood that a high diffusion factor can lead to un-

stable results and, in the case of image smoothing, false edges. It is
thus recommended to keep the diffusion factor low. To explore the
effect of the level of diffusion on real images, we use the diffusion
factor pair (1/20,1/40) instead of (1/8,1/16), which were used in

(a) Original (b) σ = 5

(c) N.L.M.D (d) α = 50

(e) α = 100 (f) α = 200

Figure 4: The images show a segment of a larger parrot image. In
image (b), noise with σ = 5 was added to the original. Image (c)
shows the result obtained by using the NLMD-method. Images (d-f)
show the results of our method with α = 50, α = 100 and α = 200
respectively. Here we use the strong edge preservation condition.

(a) Original (b) σ = 10

(c) N.L.M.D (d) α = 50

(e) α = 100 (f) α = 200

Figure 5: The images show a section of the larger parrot image. In
image (b), noise with σ = 10 is added. Image (c) shows the result
obtained by the NLMD-method. Images (d-f) show the results of our
method with α = 50, α = 100 and α = 200 respectively.
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(a) Lena 1985 (b) σ = 30

(c) NLMD (d) Our method

Figure 6: Noise with δ = 30 was added to the original. Denois-
ing with NLMD, image c removes most of the visible noise. In our
method, we use α = 800. Also, we use the kernel G∗3 twice with the
strong condition. The diffusion factors are 1/8 and 1/16.

the previous experiments. We ran three experiments with n = 7 and
α = 100. To compensate for the reduced diffusion we ran the algo-
rithm twice. The results of the experiments are shown in Figure 8.
A closer inspection of the of the images shows effective noise reduc-
tion. In order to display the difference between the original and the
algorithm’s output, we calculate the absolute difference between the
gradients of resultant image and the original image I.

D(x,y) = ‖∇I(x,y)−∇Ĩ(x,y)‖1.

σ = 5 σ = 10
Noisy 34.25 28.28
NLMD 40.18 37.06
α = 25 34.37 32.89
α = 50 36.59 33.67

α = 100 37.66 34.20
α = 200 37.74 33.36

Table 1: The PSNR between the original Parrot image and the pro-
cessed images.

Noisy 18.85
NLMD 30.17

Our 28.41

Table 2: The PSNR between the original Lena image and the pro-
cessed images.

Conclusion
We have presented an effective edge-preserving smoothing al-

gorithm. By using an exponentially increasing size filter, the algo-
rithm allows diffusion between non-connected image regions without
blurring edges. To preserve edges, we use a constraint that prohibits

Salt & Pepper 25.37
Weak 37.22

Medium 36.16
Strong 34.53

Table 3: The PSNR between the original Woman image and the pro-
cessed images.

the norm of the gradient from increasing during smoothing. Further,
we show that this constraint can be loosened to allow more diffusion
when needed. Our tests show that the algorithm is comparable to the
effective non-local means denoising. In contrast to our algorithm,
non-local means requires knowledge of the present noise statistics
and works best for white noise. With an automatic adjustment of the
parameters based on information about the noise in the picture, our
method could be enhanced. We especially believe that the computa-
tional complexity of the constraint can be substantially reduced.
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(a) Salt & Pepper

(b) Strong condition

(c) Medium condition

(d) Weak condition

Figure 7: Salt and pepper noise is added in each colour layer in image
(a). We have used α = 25. Diffusion to the centre pixel is blocked
by using (b) the strong condition, (c) the medium condition and (d)
the weak condition.

(a) Monarch butterfly

(b) Gaussian noise

(c) Denoised image

(d) Gradient difference

Figure 8: The original image (a) has Gaussian noise with mean 0 and
variance 0.001 (b). We applied our method with a diffusion factor
pair (1/20,1/40), α = 100, and n = 7. We ran our diffusion process
twice(c). Image (d) shows the absolute difference in the gradients
between the image (b) and (c). Here we use the strong edge preser-
vation condition.
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