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Abstract
In the past few decades, there has been intensive research

concerning the Unmixing of hyperspectral images. Some meth-
ods such as NMF, VCA, and N-FINDR have become standards
since they show robustness in dealing with the unmixing of hy-
perspectral images. However, the research concerning the un-
mixing of multispectral images is relatively scarce. Thus, we
extend some unmixing methods to the multispectral images. In
this paper, we have created two simulated multispectral datasets
from two hyperspectral datasets whose ground truths are given.
Then we apply the unmixing methods (VCA, NMF, N-FINDR)
to these two datasets. By comparing and analyzing the results,
we have been able to demonstrate some interesting result for
the utilization of VCA, NMF, and N-FINDR with multispectral
datasets. Besides, this also demonstrates the possibilities in
extending these unmixing methods to the field of multispectral
imaging.

Introduction
Hyperspectral imaging camera captures the information

across the electromagnetic spectrum including ultraviolet, visi-
ble, and infrared [1, 2]. The broad spectral range of hyperspec-
tral imaging gives it an incomparable advantage in detection and
classification in domains such as food quality control [3], coal
mining [4], and ecosystem studies [5].

Multispectral imaging has some similarities with hyper-
spectral imaging, yet they have many differences in essence and
applications. One difference is the volume of the data. Hyper-
spectral imaging usually has around 200 spectral bands, while
there usually exists only a few important bands (usually between
4 and 20) in multispectral imaging. This feature makes it much
faster to obtain multispectral data than hyperspectral. In fact,
as Qin et al. have pointed out, in real cases, hyperspectral im-
ages are usually used as fundamental datasets from which to de-
termine optimal wavebands that can be used by a multispectral
imaging solution for a particular application [6]. In that case, the
band width of multispectral images will be larger than the cor-
responding hyperspectral images because multispectral images
have fewer bands in the same range of wavelengths.

An important use of hyperspectral processing is unmixing.
It is defined as the process of separating the spectral signatures
(endmembers) and respective proportions of each endmember
(abundances) from hyperspectral images [7]. Many Unmixing
methods such as Vertex Component Analysis (VCA), N-FINDR,
and Nonnegative Matrix Factorization (NMF) have been vali-
dated for hyperspectral images [8, 9, 10, 11].

However, in real situations, due to various constraints, we
might only have multispectral images. In fact, multispectral im-
ages are more commonly used, because hyperspectral devices
are more expensive and require more processing. As Hruska
et al. have mentioned, hyperspectral imaging can require more

scheduling of time in advance to use advanced, high quality sys-
tems such as AVIRIS and HyMap. Moreover, the cost for hy-
perspectral images is also much higher (around 10 times higher)
than that for multispectral images [12].

Nowadays, the research concerning the unmixing of mul-
tispectral imaging is becoming increasingly pertinent. On the
one hand, there are more and more people using multispectral
imaging, because it is more cost-effective and time-efficient than
hyperspectral imaging. On the other hand, recent research still
concentrates on hyperspectral imaging like the classification of
hyperspectral imaging with data mining methods including KNN
[13], K-MEANS [14], and SVM [15]. There are very few re-
search focusing on Multispectral Unmixing.

Unmixing methods
Although there are several different hyperspectral unmix-

ing methods, in this article we focus on three Unmixing meth-
ods: VCA, N-FINDR, NMF. This choice is based on two con-
siderations. Firstly, these three unmixing methods are the most
widely used for unmixing. The performance of these three meth-
ods on the hyperspectral images prove to be robust and reliable.
Secondly, these three methods have differences in their basic as-
sumptions and process. For example, VCA finds the most suit-
able endmembers by iteratively projecting data onto the direc-
tion orthogonal to the subspace which is already spanned by
the endmembers [8]. Meanwhile, the idea of N-FINDR is to
find the endmembers that will form the largest volume in the
N-dimension [16]. These differences give each method unique
advantages depending on the real situations.

VCA assumes the existence of pure pixels in the dataset.
Based on that, the endmembers found will always be situated
at the vertices of a simplex. VCA has to generate random vec-
tors when starting the extraction of endmembers. According to
Chang, such randomness in the initialization made the results of
VCA less repeatable at times [17].

For N-FINDR, this algorithm is based on the idea that in
the N spectral dimensions, the number of N-Volume is gigantic.
However, the one that is formed by the purest endmembers will
be the largest. Starting with random sets of pixels, it gradually
iterates until the largest volume is found. N-FINDR shares a
similar feature with VCA in randomness in initial values, which
may lead to problems in repeatability.

As for NMF, its algorithm only allows non-negative values
in the procedure of Unmixing. The feature of non-negative val-
ues in the matrices makes the result an additive combination of
all parts of the images. Such a feature permits NMF to be able to
consider more of the local information of the data, which grants
NMF an advantage over VCA, N-FINDR. The disadvantage of
NMF is that it fails in guaranteeing that its results are the global
minimum instead of the local minimum [18].

https://doi.org/10.2352/issn.2169-2629.2021.29.311
©2021 Society for Imaging Science and Technology

31129th Color and Imaging Conference Final Program and Proceedings



Experimental Protocol
The purpose of this paper is to extend the unmixing meth-

ods, which were previously restricted in the field of hyperspectral
imaging, to the field of multispectral imaging.

As the Figure 1 suggests, we choose to simulate the multi-
spectral images from hyperspectral images so that we can com-
pare the results with the ground truth of hyperspectral imaging.
In this paper, we have two different sensitivity curves. The first
sensitivity curve is from a real multispectral camera (Figure 2),
while the second sensitivity curve is a synthetic curve (Figure 3).
Their wavelength scopes are respectively 400–1000 nm, 400–
2500 nm. Due to the page limit, we present the results of both
sensitivity curves upon the first dataset, but only the result of real
sensitivity curve upon the second dataset.

From Equation 1, we are able to obtain the multispectral
imaging as if acquired from a multispectral camera. Equation 1
is computed for each channel, but for most cases, the R(λ ) and
S(λ ) usually have different intervals. Therefore, the bandwidth
of Sensitivity Data S(λ ) needs to be adapted to the spectrometer
measure by linear interpolation.

Y =
∫

λmax

λmin

I(λ )R(λ )S(λ )dλ , (1)

where I(λ )is the Illumination, R(λ ) is the Reflectance of the Hy-
perspectral Data, S(λ ) is the Sensitivity Data of the Multispectral
Camera, Y is the result of Multispectral Data, λmin is the mini-
mum wavelength of the sensitivity curves, λmax is the maximum
one.

After obtaining the multispectral data, we apply the un-
mixing methods (VCA, N-FINDR, NMF) upon the multispectral
data. Once the endmembers are extracted, we can calculate the
abundance of each endmember.

Figure 1. Experimental Procedure

Experiment and results
In the following experimental part, we apply the methods

to two datasets: Jasper dataset, Painting dataset. Our decision to
choose these two datasets is based on two considerations. Firstly,
Jasper is an open dataset in the field of remote sensing which
has already been utilized and validated by researchers, like the
cases in [20, 21]. While at the same time, the Painting dataset
is a dataset belonging to the field of pigments and painting. It is
a new dataset that was published this year. Because these two
datasets originate from two different domains, the experiment
can better suggest and prove the possibilities for extending the
unmixing methods for multispectral imaging. Secondly, we have

Figure 2. Real Sensitivity Curve of Multispectral Camera

(Channel 1-8: Selective channels. Channel 9: Panchromatic channel)

Figure 3. Synthetic Sensitivity Curve of Multispectral Camera

ground truths for both of these two datasets, which will enable us
to validate our results and methods.

Experiment on Multispectral Data of Jasper
The Jasper dataset is an open dataset taken with the AVIRIS

camera. It is a hyperspectral image with 100 × 100 pixels and
198 bands from 400 nm to 2500 nm. Four endmembers are con-
cerned in this dataset, they are respectively Tree, Water, Dirt and
Road. The ground-truth spectra and abundances of these four
endmembers are already known. Using the radiance value, we
can simulate the Multispectral image.

Following the Experimental Procedure showed in Figure 1,
we can have the unmixing results of Multispectral Jasper. In Fig-
ure 4, the Hyperspectral ground truth and Multispectral ground
truth are demonstrated with the Unmixing results upon the Mul-
tispectral Jasper using VCA, N-FINDR, NMF. The Multispectral
results are displayed with only 8 values. The first eight bands
are relatively selective (Figure 2). The ninth band of the Mul-
tispectral camera is associated to a panchromatic filter (Figure
2) and so is not displayed on the wavelength spectra. To verify
the consistency of the simulated image, we also displayed the
Hyperspectral ground truth (It has the color of Magenta and cor-
responding vertical axis indicates the Radiance in the right side
of the figure). The Multispectral ground truth has the color of
yellow and corresponding vertical axis indicates the Value in the
left side of the figure.
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Figure 4. Unmixing results of Multispectral Jasper (using Real Sensitivity)

Figure 5. Abundance Maps of the Unmixing results of Multispectral Jasper (using Real Sensitivity)

Figure 6. Unmixing results of Multispectral Jasper (using Synthetic Sensitivity)

In Figure 4, we remark that the Multispectral Unmixing of
VCA, N-FINDR, NMF and Multispectral ground truth have sim-
ilar trends for these four endmembers. In fact, among these three
unmixing methods, the results of N-FINDR are closer to the Mul-
tispectral ground truth for the Tree, Water, and Road endmem-
bers. At the same time, the results of NMF are the farthest from

the Multispectral ground truth for the Tree, Dirt, and Road end-
members. Summarized from the unmixing results of these four
endmembers, we can find out that the N-FINDR obtains the best
result in unmixing Multispectral Jasper, while the NMF performs
the worst in unmixing Multispectral Jasper.

There exists another point in Figure 4 that is worth noticing.
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Figure 7. Unmixing results of Multispectral Jasper (using Synthetic Sensitivity)

When we compare the trends between Multispectral Jasper and
Hyperspectral Jasper, their trends are very consistent for the Tree
and Water endmembers. It seems that they are not congruent in
the trend when it comes to the endmember of Road. In fact, the
trends of Hyperspectral ground truth and Multispectral ground
truth are still consistent when we consider the fact that the peaks
of sensitivity curves are lower at longer wavelengths (as Figure 2
shows). When applying Equation 1, the trends of the multispec-
tral results are decreasing, because they are more influenced by
the decreasing peaks than the increase in radiance. This is the
reason why in the Road endmember, the Hyperspectral ground
truth increases but the Multispectral ground truth decreases.

Figure 5 gives the corresponding abundance map of each
endmember. When we examine the unmixing results of the end-
member Road, it is obvious that N-FINDR is the only method
that is able to successfully detect the Road. Both VCA and NMF
have failed to obtain the Road endmember. In fact, in the NMF
unmixing, the Road result does not contain any valuable infor-
mation. Meanwhile, when we observe the unmixing results of
Water, it is evident that NMF performs the best, while N-FINDR
mistakenly classifies parts of Road as the Water. Summarizing
from Figure 4 and Figure 5, it is safe to say that N-FINDR per-
forms the best, VCA the second, and NMF the worst when con-
sidering the Multispectral Jasper (using Real Sensitivity).

Because the Synthetic Sensitivity Curves have 14 bands, we
can notice there are 14 values for each Multispectral results in
Figure 6. N-FINDR has an excellent performance in detecting

all the four endmembers. VCA performs worse, NMF performs
the worst. This result is similar to the result in Figure 4, which in-
dicates that the trends of unmixing results are consistent in spite
of the differences of the Sensitivity Curves. Additionally, in Fig-
ure 7, VCA and NMF have not be able to detect the endmem-
ber of Road successfully, but N-FINDR performs well in finding
Road. Considering the fact that N-FINDR is only method detect-
ing Road correctly in Figure 5, we can conclude that N-FINDR
is the most robust among these three methods.

Experiment on Multispectral Data of Painting
This Painting dataset was firstly presented by Grillini et al.

[22]. In this dataset, seven different pigments are concerned:
Kremer White, Ultramarine Blue, Naples Yellow, Carmine, Ver-
milion, Viridian Green, and Gold Ochre DD. There are 175
painted patches in total. Each 2cm × 2cm patch is either a pure
pigment or the known mixture of 2 to 3 pigments. According
to the painting conservators, it is very rare to find in oil painting
any mixture whose number of pigments exceeds 3. This dataset
presents the reflectance of each patch from 400 nm to 1000 nm
with 186 bands.

In Figure 8, the Multispectral ground truth, Hyperspectral
ground truth, and the endmembers extracted with VCA, NMF,
N-FINDR are displayed. For each pigment, its Multispectral
ground truth and its endmember extraction results from VCA,
N-FINDR, and NMF are presented. Among these three endmem-
ber extraction Methods, VCA performs the best in the endmem-
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Figure 8. Unmixing results of Multispectral Painting

ber of Vermilion, Carmine, and Viridian Green, while N-FINDR
performs the best for the Kremer White and Ultramarine Blue
endmembers. Their performances upon Naples Yellow are simi-
lar. From Figure 8, we can notice that the trends of the unmixing
results of VCA, NMF, and N-FINDR are mostly consistent with
the trend of Multispectral ground truth. Like the case of Figure
4, there also exists a similar phenomenon that the trend of Hyper-
spectral Painting seems inconsistent with that of the Multispec-
tral Painting. This is also due to the reason that the peaks and
values of Sensitivity Curves become smaller with the increasing
of wavelength.

Unlike the dataset of Multispectral Jasper, which is an im-
age of 100 × 100 pixels, the data size of Painting dataset is rel-
atively small. Thus, it is not possible to present the results of
abundance estimation of the Painting dataset using Abundance
Map, which is very intuitive. In view of that, we put forward a
metric called SAVD (Sum of the Absolute Value of Difference
between estimation abundance and ground truth abundance) for
measuring its performance in Abundance Estimation. SAVD can
be expressed as below:

SAVD =
n

∑
k=1
|EAk−GTAk|, (2)

In this formula, n signifies the the number of endmembers. EAk
signifies the estimated abundance of kth endmember. GTAk sig-
nifies the ground truth abundance of kth endmember. SAVD is an
index which can show the performance of Abundance Estima-
tion directly. Its value scope is from 0 to 200%, this is because
SAVD denotes the sum of all the absolute values of its composi-
tions. For example, the SAVD of a color patch would be 200% if
it only contained Carmine yet was classified as Vermilion.

In Table 1, each pigment exists in 65 color patches, thus
the SAVD of each pigment is their corresponding average of
SAVD in these 65 color patches. Firstly, the average of 7 pig-
ments of SAVD of each Unmixing method is very close (VCA is
21.7%, NMF is 22.7%, N-FINDR is 22.4%). This has revealed
that the performances of VCA, NMF, N-FINDR are quite close.
Secondly, it is observed that the values of N-FINDR among the
seven pigments are more balanced (The standard deviations of
VCA, NMF, and N-FINDR are respectively 7.80%, 16.30% and
3.86%). Meanwhile, some extreme values exist in the unmixing
results of VCA and NMF. For example, in VCA, the unmixing of
Naples Yellow is 36.2%. In NMF, the unmixing of Ultramarine

Table 1: The Unmixing results on Painting Dataset

SAVD
Endmember VCA NMF N-FINDR
Vermilion 18.4% 20.1% 23.2%
Gold Ochre DD 26.5% 14.3% 18.0%
Ultramarine Blue 18.5% 58.9% 25.3%
Kremer White 15.5% 14.3% 17.0%
Carmine 23.4% 22.6% 25.6%
Naples Yellow 36.2% 14.6% 20.8%
Viridian Green 13.3% 14.0% 26.7%

Average of 7 pig-
ments

21.7% 22.7% 22.4%

Blue is 58.9%. The endmember extracted by the NMF methods
is very different from the ground truth which can explain why its
abundance estimation is worse. At the same time, from Figure 8,
even though the endmembers extracted using VCA are very close
to the Multispectral Groundtruth, there are still extreme values of
VCA in Table 1.

Figure 9. Theoretical Spectra using VCA and Real Spectra of the Color-

patches

To explore the possible reasons about these extreme val-
ues, we select two color patches: Colorpatch#35, Colorpatch#69.
Such choice is based on the following criteria: Colorpatch#35
has the smallest SAVD with VCA and Colorpatch#69 has the
highest. As VCA has the smallest SAVD, we choose to present
only its results. In Figure 9, the Real Spectra is the Multispectral
value which is converted from the Reflectance acquired directly
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from spectrometer, while the Theoretical Spectra is calculated
from the given spectra of the pigments and their corresponding
abundances in each color patch. In the figure of Colorpatch#69,
we notice that the Real Spectra is very different from the Theo-
retical Spectra. This phenomenon is possibly caused by the uti-
lization of linear Abundance Estimation. However, the mixing
of oil in the painting is usually non-linear, which can account for
the existence of extreme values of SAVD using VCA.

Conclusion
In this article, using two Sensitivity Curves of Multispec-

tral Camera, we have been able to transform two Hyperspectral
datasets (Jasper Dataset, Painting Dataset) into two Multispectral
datasets. Then, we have applied three Unmixing methods (VCA,
N-FINDR, NMF) upon these two Multispectral datasets. The re-
sults indicate that we can apply these Unmixing methods to mul-
tispectral datasets and obtain useful results. In the Jasper dataset,
N-FINDR performs the best and NMF performs the worst. While
in the Painting dataset, there does not exist very noticeable dif-
ferences among these three methods.

The results from our experiments have demonstrated the
possibilities of these methods to be used in the application of un-
mixing the Multispectral images. Considering the fact that there
exist other unmixing methods which are constrained to the field
of Hyperspectral Unmixing (like the CNMF in [23]), there exist
the possibilities that they can also be extended to be applied to
Multispectral Imaging in the future.

This paper presents a proof of concept: unmixing methods
can be applied to Multispectral data. Yet, we have only presented
results from simulated Multispectral images. The next step will
be to use real Multispectral images. Hyperspectral and Mul-
tispectral images present different characteristics (number and
bandwidths of the bands). These differences should lead us to
modify the unmixing method in order to adapt it to our specific
data: Multispectral images.
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