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Abstract 

Multispectral images contain more spectral information of the 
scene objects compared to color images. The captured information 
of the scene reflectance is affected by several capture conditions, of 
which the scene illuminant is dominant. In this work, we 
implemented an imaging pipeline for a spectral filter array camera, 
where the focus is the estimation of the scene reflectances when the 
scene illuminant is unknown. We simulate three scenarios for 
reflectance estimation from multispectral images, and we evaluate 
the estimation accuracy on real captured data. We evaluate two 
camera model-based reflectance estimation methods that use a 
Wiener filter, and two other linear regression models for reflectance 
estimation that do not require an image formation model of the 
camera. Regarding the model-based approaches, we propose to use 
an estimate for the illuminant’s spectral power distribution. The 
results show that our proposed approach stabilizes and marginally 
improves the estimation accuracy over the method that estimates the 
illuminant in the sensor space only. The results also provide a 
comparison of reflectance estimation using common approaches 
that are suited for different realistic scenarios. 

Introduction 
Multispectral cameras based on the spectral filter array (SFA) 

technology are relatively new on the market [1]. They are snapshot 
compact devices that jointly sense spatio-spectral scene information 
and they have high framerates which makes them suitable for real-
time machine vision applications. One of the main goals in a 
multispectral imaging application is recovering accurate spectral 
information of the objects in the scene. The spectral accuracy of an 
SFA camera is typically lower than that of a hyperspectral imaging 
system that provides standardized spectral data (e.g. reflectance 
factors), however, SFA cameras are faster and compact, which 
makes them a good choice in various image and video applications, 
such as: medical imaging [2], computer vision [3], or appearance 
measurement [4]. It is possible to estimate a standardized data 
representation from multispectral captures using computational 
techniques, such as multispectral constancy [5]. The key point of 
multispectral constancy is estimating the illuminant in the scene, so 
that it can be discounted from the captured data, i.e., its impact on 
the captured scene information can be removed. Thus, estimating 
the scene illuminant is an important part in the estimation of scene 
reflectances. It can be done explicitly, by estimating the illuminant 
in the camera sensor (multispectral) space [5-6] or its spectral power 
distribution (SPD) [7-8], or implicitly, by directly calibrating a 
transform between the camera captures under the specific illuminant 
and known scene reflectances.  

In this paper, we implement an imaging pipeline for a visible 
range multispectral SFA camera and evaluate its performance on the 
estimation of reflectances in scenes where the illuminant is not 
known. We evaluate four reflectance estimation approaches that are 
suitable for different usage scenarios: the first two utilize a linear 

camera model, while the other two do not. The first approach is 
using a conventional Wiener filter that is trained on a canonical 
(default) illuminant and that first uses a diagonal transform to 
transform the camera data from the estimated to the canonical 
illuminant [9]. The second approach is also a Wiener filter, but it is 
trained on an estimated spectral power distribution (SPD) of the 
illuminant in the scene. We propose a linear regression model for 
estimating the illuminant’s SPD from its sensor-space estimate, 
using camera sensitivities and illuminants database as prior 
information. The third approach is a linear regression model trained 
under a canonical illuminant using a set of know reflectances in the 
scene, which uses a diagonal transform to transform the data from 
the estimated to the canonical illuminant. The fourth approach is 
suitable for the best-case scenario where a linear regression model 
is trained during the capture using a set of known reflectances in the 
captured scene, such as a color checker.  

These four reflectance estimation methods are evaluated using 
real camera captures in three usage scenarios when the illuminant is 
unknown: a most challenging scenario where there is no known 
reflectance in the scene, a scenario where there is a white or gray 
patch in the scene, and a scenario where we have a set of known 
reflectances in the scene. The number of evaluated combinations 
(between the three usage scenarios and the four reflectance 
estimation methods) is seven – as not all combinations are feasible. 
The evaluation shows that using the recovered illuminant’s SPD 
stabilizes and slightly improves the accuracy of the model-based 
reflectance estimation using Wiener filter. The results also show that 
a linear regression model trained on a canonical illuminant and 
cascaded with a diagonal transform performs similar to the camera 
model-based Wiener estimators, and they also confirm that using 
more known reflectances in the scene significantly improves the 
reflectance estimation accuracy. 

In the next sections, we first describe the proposed method for 
illuminant’s SPD estimation, followed by the reflectance estimation 
methods we have used. The evaluation framework and the results 
are then presented, followed by conclusions at the end. 

Illuminant estimation 
In the commonly used linear image formation model, the camera 

response of the i-th channel ci, is calculated using the camera 
channel’s spectral sensitivity Si(λ), the SPD of the illuminant L(λ), 
the spectral reflectance of the captured object R(λ), a normalization 
constant k, and with added dark current bi and random noise εi: 

𝑐௜ ൌ 𝑘 ׬ 𝑆௜ሺ𝜆ሻ𝐿ሺ𝜆ሻ𝑅ሺ𝜆ሻ𝑑𝜆 ൅ 𝑏௜ ൅ 𝜀௜ఒ  (1) 

In practice, the integral in Eq. (1) is substituted with a finite sum 
using a fixed size for Δλ (Δλ =10nm in this work), and the dark 
current that is subtracted as the first processing step is excluded from 
the model. Then, the model can be written in discrete form: 
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𝐜 ൌ 𝑘𝐒𝐋𝐫 + ε (2) 

In Eq. (2), 𝐜 ∈ ሾ0,1ሿ௠ is the vector-column of the m camera 
channel responses compensated for the dark current, 𝐫 ∈ ሾ0,1ሿ௡ is a 
vector-column of the n-bands captured reflectance, L is a n×n 
diagonal matrix containing the SPD of the illuminant, S is an m×n 
matrix containing the m camera system sensitivities as row vectors, 
k is a constant, and ε is the additive noise. The constant k is a 
normalization constant that is used to equate the model values with 
the real camera sensor values, and it is used e.g., to model the 
variation of the camera responses with exposure or lens aperture.  

For a given camera system with concrete capture settings and 
for a given object reflectance, the camera responses are mainly 
affected by the SPD of the illuminant. Since recovering the scene 
objects properties (e.g. reflectance, color) from the camera 
responses is a goal in most camera applications, the impact of the 
illuminant on the camera responses should be minimized, or ideally 
removed. This can be done by measuring the illuminant and/or 
calibrating the camera for that particular illuminant. When the 
illuminant in the scene is not known, it can be estimated from the 
captured image using algorithms such as max-spectral, spectral gray 
world, spectral shades of gray, or spectral gray edge [6]. These 
algorithms estimate the illuminant in the camera sensor space. 
Alternatively, the SPD of the illuminant can be estimated from the 
captured image, e.g., by estimating the most likely one from a 
dataset of known illuminants [10], using a generalized inverse [7], 
or using convolutional neural networks [8]. 

In this work, we propose a linear estimator of the illuminant’s 
SPD based on regularized least squares optimization. We first 
estimate the illuminant in the sensor space using one of the existing 
methods, and then use the camera sensitivities and illuminants 
database as prior information to train a linear regression estimator 
for the illuminant’s SPD. If the illuminant in the sensor space l is 
defined as the camera response to a perfect white diffuser 𝐫୵, then 
according to the Eq. (2) it is modelled as: 

𝐥 ൌ 𝑘𝐒𝐋𝐫୵ + ε (3) 

The regularized least squares estimation for the illuminant’s 
SPD 𝐋መ  from the sensor-space estimated illuminant 𝐥መ is: 

𝐋መ ൌ 𝐐୐𝐥መ ൌ 𝐋୲𝐋ୱ୲
𝐓൫𝐋ୱ୲𝐋ୱ୲

𝐓 ൅ 𝜆୐𝐄൯
ିଵ

 𝐥መ  (4) 

 In Eq. (4), 𝐐୐ is the linear regression matrix calculated using 
column-arranged training illuminant SPDs 𝐋୲ and simulated (using 
Eq. (3)) sensor-space illuminants 𝐋ୱ୲. The parameter 𝜆୐ is a 
regularization constant, 𝐄 is the identity matrix. For the calculation 
of the regression matrix 𝐐୐, the columns in 𝐋୲ and 𝐋ୱ୲ are 
normalized so that their L1 norm is one, and consequently, the 
estimated sensor-space illuminant 𝐥መ is normalized to a L1 norm of 
one before it is used for calculating 𝐋መ . The L1 norm of the estimated 
illuminant’s SPD 𝐋መ  in general is not equal to one, and it can 
sometimes be negative. Therefore, the negative values in 𝐋መ  are 
clipped to zero and 𝐋መ  is normalized to a unit L1 norm. The estimation 
of the sensor-space scene illuminant 𝐥መ can be done using commonly 
used methods; in this work, we use the spectral gray world [6] for 
the scenario where there is no reference patch in the scene, and we 
use the camera sensor values of the white patch for the scenario 
when a white patch is present in the scene. 

Reflectance estimation 
In this work, we evaluate four different methods for estimating 

reflectance from the camera responses. The first one is based on a 
Wiener filter estimator 𝐖େ trained on a canonical illuminant 𝐋େ and 
a diagonal transform 𝐃 that converts the camera responses c from 
the estimated scene illuminant 𝐥መ to the canonical illuminant 𝐥େ [9]: 

𝐃 ൌ diag൫𝐥େ ൊ 𝐥መ൯  (5) 

𝐫ො ൌ 𝐖େ𝐃𝐂 ൌ 𝑘𝐑𝐑୘𝐋େ
୘𝐒୘൫𝑘ଶ𝐒𝐋େ𝐑𝐑୘𝐋େ

୘𝐒୘ ൅ 𝐊𝛆൯
ିଵ
𝐃𝐜  (6) 

In Eq. (5), 𝐥መ is the estimated scene illuminant in the sensor space, 
𝐥େ is canonical illuminant in the sensor space, and the operator “÷” 
denotes element-wise division. In Eq. (6), 𝐫ො is the estimated 
reflectance, while 𝐑 is a n×N matrix of N training spectral 
reflectances. The m×m diagonal covariance matrix of the noise 𝐊𝛆 
is estimated from the difference between simulated and observed 
camera responses [11].  

The second reflectance estimation method is also based on a 
Wiener estimator, 𝐖୉, but it is trained using the estimated 
illuminant’s SPD: 

 𝐫ො ൌ 𝐖୉𝐂 ൌ 𝑘𝐑𝐑୘𝐋୉
୘𝐒୘൫𝑘ଶ𝐒𝐋୉𝐑𝐑୘𝐋୉

୘𝐒୘ ൅ 𝐊𝛆൯
ିଵ
𝐜  (7) 

The estimated illuminant 𝐋୉ in Eq. (7) is an n×n diagonal matrix 
containing the estimated illuminant’s SPD 𝐋መ  that is calculated using 
Eq. (4). Note that these two reflectance estimation methods require 
the knowledge of the camera sensitivities. 

The third reflectance estimation method is also a linear 
regression method, but it is based on regularized least squares 
optimization for a canonical illuminant: 

𝐫ො ൌ 𝐐େ𝐃𝐂 ൌ 𝐑୲𝐂୲
୘൫𝐂୲𝐂୲

୘ ൅ 𝜆େ𝐄൯
ିଵ
𝐃𝐜  (8) 

In Eq. (8), 𝐑୲ is an n×M matrix of M training spectral 
reflectances, 𝐂୲ is an m×M matrix of M captured sensor responses 
under the canonical illuminant, 𝜆େ is a regularization constant, and 
𝐄 is the identity matrix. The regression matrix 𝐐େ can be trained 
using a color checker [12]. The diagonal matrix 𝐃 is calculated using 
Eq. (5). Unlike the previous two methods, this method does not 
require the knowledge of the camera sensitivities. 

The fourth reflectance estimation method is the baseline method 
which does not explicitly estimate the scene illuminant, but it relies 
on having a set of known reflectances, 𝐑୲ , in the captured scene. 
The captured multispectral values of these known reflectances, 𝐂୲, 
are then used to train a linear regression estimator based on 
regularized least squares optimization: 

𝐫ො ൌ 𝐐𝐂 ൌ 𝐑୲𝐂୲
୘൫𝐂୲𝐂୲

୘ ൅ 𝜆େ𝐄൯
ିଵ
𝐜  (9) 

We used M = 24 patches from the X-Rite Digital SG Color 
Checker (marked in red in Fig. 1) to train the regression matrices 𝐐 
and 𝐐େ. The regularization constant 𝜆େ in Eqs. (8) and (9) is 
calculated as the average of the optimal regularization values for 
several different illuminants using leave-one-out cross-validation. 

In this work, we consider three different scenarios for 
reflectance estimation. In the first scenario, there is no known 
reflectance in the scene so that the constant k in Eq. (2) cannot be 
accurately estimated. Therefore, the value of k can be chosen e.g., 
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as the value for which the maximal sensor response to a perfect 
white diffuser equals a certain value (0.8 in our work). For this 
scenario, the first three reflectance estimation methods (using Eqs. 
(6)-(8)) are evaluated. The illuminant in the sensor domain 𝐥መ is 
estimated using the spectral gray world algorithm, and it’s SPD 𝐋መ  is 
estimated using Eq. (4). In the second scenario, there is one known 
reflectance in the scene - a white (or gray) patch. We use the known 
reflectance to estimate the constant k, and also to estimate the 
illuminant in the sensor space 𝐥መ and afterwards its SPD 𝐋መ  using Eq. 
(4). For this scenario, we also evaluate the first three reflectance 
estimation methods (using Eqs. (6)-(8)). In the third scenario, there 
is a set of known reflectances in the scene, e.g., the 24 patches from 
a classic color checker. This simulates a scenario where the use of a 
color checker is a viable option, and therefore we evaluate only the 
fourth reflectance estimation method (using Eq. (9)). With these 
three scenarios, the number of evaluated reflectance estimations in 
this work is seven. 

Evaluation 

Imaging pipeline for SFA camera 
We used the 1.3MP Silios CMS-C multispectral camera [13] 

with a 3×3 filter array that captures one panchromatic band and eight 
narrow bands in the visible range, centered at: 440 nm, 473 nm, 511 
nm, 550 nm, 587 nm, 623 nm, 665 nm, and 703 nm. The camera 
sensitivities were measured by the manufacturer. Using the IDS 
software suite for uEye cameras [14], we implemented an imaging 
pipeline that follows generally common steps [15-16]. These are 
briefly described next in the order in which they are performed.  

In the first stage of setting up the camera, the lens aperture and 
focus are adjusted to a satisfying level in terms of image sharpness 
and depth of field. Subsequently, the exposure time is adjusted so 
that the dynamic range is well utilized for the target capture objects.  

For the given settings and with closed camera lens, a dark 
current image is estimated as the median of d successive captures. 
The dark current image is then subtracted from any captured raw 
image with the same settings. In this work, we used d=25. 

The sensor is set to a state where it is most linear with incident 
irradiance. This included adjusting the sensor black level, setting the 
camera gain as well as the sensor gamma to 1, and switching off 
other default processing on the sensor chip. The camera response 
function is then estimated from multiple captures with different 
exposures, and it used to obtain a look-up table for mapping the 
sensor values to quantities proportional to the incident irradiance. 

In an imaging system, there are many different sources of noise, 
coming from the light itself (e.g. photon-shot noise or time-varying 
light) and from the imaging system (e.g. readout noise, hot pixels, 
or reset noise). Therefore, we average f input raw frames before 
proceeding further. The high framerate of SFA cameras makes this 
operation very time efficient. In this work, we set f=10. 

In this work, we use a computationally efficient demosaicing 
algorithm – the bilinear interpolation. While it is known that the 
perceptual quality of the demosaiced image obtained using bilinear 
interpolation is far from optimal, we find it good enough for surfaces 
with low spatial variation of the reflectance – such as the captured 
color checker patches that are used in this work. 

To compensate for the spatially varying illumination as well as 
for the spatially varying sensitivity of the camera (coming from the 
sensor or the lenses), we flat-field each of the multispectral channels 
separately. In this work, the flat-field mask for each of the channels 
is calculated using the X-Rite ColorChecker® White Balance target 
[12], and it is normalized to a small region in the center of the image. 

The mask is then used to divide the input multispectral channels. 
The output of this step is the flat-fielded multispectral image, or as 
often referred in this paper, the camera responses. 

Experimental setup 
The evaluations of the illuminant and reflectance estimation 

methods are performed using multispectral images obtained from 
the described pipeline. The estimation methods were evaluated on 
the captured X-Rite Digital SG ColorChecker®, specifically on the 
72 patches that exclude the border neutral patches as well as the 24 
patches from the classic color checker that were used for training. 
Figure 1 illustrates one captured scene, together with markings for 
the training and testing patches. The ground-truth reflectances of the 
Digital SG color checker were obtained using X-Rite i1 Pro 2 
spectrophotometer, which uses 45°/0° measurement geometry. We 
used six illuminants in our work that cover a variety in terms of 
shape of their SPD: four illuminants (Daylight, A, Cool White, 
TL84) from the viewing booth GretagMacbeth Spectralight III, and 
two LED illuminants using the PIXEL K80 RGB LED lighting 
system with CCT of 2600K and 6500K, respectively. We measured 
the six illuminant’s SPDs using a Konica-Minolta CS-2000 
spectroradiometer; they are shown in Fig. 2. We chose to use the 
Daylight illuminant as the canonical illuminant in this work because 
it has the most uniform SPD of all the six. We trained the Wiener 
filter estimators in Eqs. (6) and (7) using the Munsell chips 
reflectances [17]. As training illuminants data in Eq. (4), we used 
the SFU dataset of 102 illuminants [18]. The camera capture 
geometry was set to be as close as possible to the 45°/0° geometry 
used for measuring the ground-truth: the camera viewing angle was 
0°, while the direct component of the six light sources was set to be 
around 45° relative to the Digital SG color checker plane. 

The accuracy of illuminant and reflectance estimation can be 
evaluated using different objective metrics. For the estimated 
illuminants we use the ΔA angle (also known as spectral angle) 
between the two row-vectors representing the ground-truth 𝐠 and the 
estimation 𝐠ො: 

ΔA ൌ 𝑎𝑟𝑐𝑐𝑜𝑠 ൬
𝐠𝐠ො౐

ඥሺ𝐠𝐠౐ሻሺ𝐠ො𝐠ො౐ሻ
൰  (10) 

For the estimated reflectances we use three different metrics: the 
root mean square error (RMSE), the cosine distance (calculated as 
1-cos(ΔA)), and the ΔE00 color difference metric. 

 
Figure 1. sRGB rendering of the estimated scene reflectances from the 
multispectral image captured under the Cool White illuminant. Additionally, the 
training 24 patches used in this work are marked with the red box, while the 
testing 72 patches are inside the marked green area. 
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Results 
We first provide results for the illuminant estimation using the 

case of no reference patch in the scene. In this case, the illuminant’s 
SPD is estimated using the proposed method from the sensor domain 
illuminant estimate. The estimation errors of all the six illuminants, 
in terms of spectral angular error are given in Table 1. It can be seen 
that the spectral gray world algorithm estimates the illuminants in 
the sensor domain with relatively high accuracy – this is expected 
since the scene is dominated by the Digial SG color checker and 
relatively large areas of spectrally flat reflectance. The average 
angular error for the estimated SPDs, excluding the LED illuminants 
that are not included in the training SFU dataset, is around 9° - which 
can be considered as a reasonably good estimation. The results point 
out that the SPD estimation can be improved by only using training 
illuminants in Eq. (4) similar to the ones that are expected during 
capture. The estimated SPDs, from the spectral gray-world sensor 
estimates (no reference patch scenario), are shown in Fig. 2. 

 Regarding the reflectance estimation, the provided results are 
for five illuminants – the Daylight illuminant is excluded because it 
is used as a canonical illuminant for some of the evaluated methods. 
Furthermore, we evaluate seven reflectance estimations: three using 
Eqs. (6-8) in a ‘no reference patch’ scenario, the same three but in a 
‘white patch in the scene’ scenario, and one estimation using Eq. (9) 
that uses a color checker (CC) in the scene, which corresponds to 
the best-case ‘set of known reflectances in the scene’ scenario. The 
average estimation errors under all five illuminants is given in  
Table 2, while the box plots for the per-illuminant estimations are 
shown in Fig. 3. An example showing the sRGB visualization of the 
estimated scene reflectances in the best-case scenario, under the 
Cool White illuminant, is shown in Fig. 1. 

Table 1: Angular error (°) for the estimated illuminants 

 Daylight A 
LED 

2600K 
LED 

6500K 
Cool 
White 

TL84 

Sensor domain 1.83 1.51 1.96 2.16 2.13 2.40 

SPD 8.20 9.87 15.49 21.52 8.88 8.93 

Table 2: Overall average reflectance estimation error for the 

different methods (referred by their estimation matrix) 

 
No reference patch 

scenario 
White patch in the 

scene scenario 
CC 

estimation 
matrix 

WcD We QcD WcD We QcD Q 

RMSE 0.096 0.079 0.072 0.063 0.051 0.056 0.021 

Cosine 
distance 

0.025 0.017 0.023 0.022 0.017 0.021 0.006 

ΔE00 8.95 7.28 7.26 7.32 5.94 6.79 2.49 

 

Figure 2. Measured and estimated SPD of all the six illuminants used on this work, normalized to a unit L1 norm. 
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Figure 3. Box plots of the reflectance estimation for the seven evaluated cases under different scene illuminants. The median values are shown with red lines, the 
mean values with green dots, and the 25%-75% percentile range with blue rectangles.  From top to bottom: A, LED 2600K, LED 6500K, Cool White, and TL84.
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Several observations can be made from Table 2. First, from the 
comparison between the ‘no reference patch’ and the ‘white 
reference patch’ scenarios, it can be seen that the estimated 
reflectances by utilizing the white patch are more accurate in terms 
of RMSE, but not so much in terms of cosine distance. This can be 
attributed to the more accurate estimation of the constant k in the 
presence of a white patch in the scene, which decreases the absolute 
RMS error, but it does not have significant impact on the estimated 
reflectance shapes – to which the cosine distance is more sensitive. 
It also should be noted that the used value for k in the ‘no reference 
patch’ scenarios was close to the optimal one for some of the five 
captured scenes; using a value that is very different from the optimal 
will lead to worse estimations, especially in terms of RMSE. 
Second, it can be seen that in both of these scenarios, the Wiener 
estimator based on the estimated illuminant’s SPD on average 
performs better than the Wiener estimator based on the canonical 
illuminant and a diagonal transform for compensating the scene 
illuminant; this is the case for all three objective metrics. Third, the 
regression-based estimator, which does not use a model of the 
camera and which is trained on a canonical illuminant and therefore 
utilizes a diagonal transform, on average is ranked in the middle 
between the two Wiener estimators. This shows that a competitive 
reflectance estimation can be performed without using the camera 
sensitivities, which can be beneficial in certain scenarios. As last, 
the regression-based estimator trained on the color checker present 
in each scene performed significantly better than the others, and this 
is the preferred method for reflectance estimation whenever a set of 
known reflectance targets can be present in the scene. 

The above points can be made from observing the reflectance 
estimation results in Fig. 3, where the performance of each of the 
three metrics on the seven estimations is presented separately for 
each of the five illuminants (not including the canonical ‘Daylight’ 
illuminant), in the form of box plots. The 25%-75% percentile range 
is shown with blue rectangles, with the median and mean value 
shown with a red line and a green dot, respectively. As an additional 
insight from Fig. 3, it can be seen that in most of the cases and for 
all metrics, the Wiener estimator trained using the estimated 
illuminant’s SPD results in more stable (less varying) estimations 
when compared to the four estimators that utilize a canonical 
illuminant and a diagonal transform. Given that the spectral gray 
world algorithm resulted in fairly accurate estimation of the 
illuminants in the sensor space – nearly the same as in the case when 
a white patch was used, an interesting issue to be investigated in a 
future work is the impact of the accuracy of the sensor-space 
estimated illuminant on the estimated SPD, and furthermore, on the 
estimated reflectance.  

Conclusions 
In this paper, we presented the imaging pipeline we have 

implemented for a visible-range multispectral SFA camera. The 
focus was put on evaluating the pipeline for estimating the captured 
scene reflectances. We proposed and evaluated a linear estimator for 
the illuminant’s SPD from the estimated or white-patch measured 
illuminant in the sensor-space. This estimator is trained using the 
camera sensitivities and a database of illuminants as prior 
information We considered different linear reflectance estimation 
methods that are suitable for use in different scenarios regarding the 
information or equipment that is available in the modelling stage and 
during the scene capture. The evaluation of the different reflectance 
estimators showed that estimating the illuminant’s SPD brings an 
improved accuracy and more stable estimations compared to the 
methods relying on a diagonal transform for discounting the scene 

illuminant. The results also showed that a trained linear regression 
model is competitive to the camera model -based Wiener estimators. 
Confirming these results using real scene objects under more 
illuminants is a potential direction for future work. Another 
direction would be introduction of an HDR workflow in the imaging 
pipeline, which could extend the scope of use of SFA cameras as 
reflectance measurement devices. 
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