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Abstract
There are many existing document image classification re-

searches, but most of them are not designed for use in con-
strained computer resources, like printers, or focused on doc-
uments with highlighter pen marks. To enable printers to better
discriminate highlighted documents, we designed a set of fea-
tures in CIE Lch(a∗b∗) space to use along with the support vec-
tor machine. The features include two gamut-based features and
six low-level color features. By first identifying the highlight pix-
els, and then computing the distance from the highlight pixels
to the boundary of the printer gamut, the gamut-based features
can be obtained. The low-level color features are built upon the
color distribution information of the image blocks. The best fea-
ture subset of the existing and new features is constructed by
sequential forward floating selection (SFFS) feature selection.
Leave-one-out cross-validation is performed on a dataset with
400 document images to evaluate the effectiveness of the classi-
fication model. The cross-validation results indicate significant
improvements over the baseline highlighted document classifica-
tion model.

Introduction
Multifunction printers (MFPs) are popular in home and

small office. This is because they offer multiple functions, such
as print, copy, and scan, for the price and size of a single device.
Apart from the cost and efficiency, the most important factor that
the customers care about is image quality. In this regard, dif-
ferent configurations of the scan/copy pipeline are embedded in
the device to optimize the image quality of a particular kind of
image type, such as text documents, highlighted pages, or pho-
tos. For example, the configuration designed for the text mode
may increase the contrast and sharpen the edges to get clear text;
and the configuration designed for the photo mode may impose
a smoothing effect to reduce the noise. A common method to
change image quality settings is through manual selection [1].
Users can choose the most appropriate mode from a list of prede-
fined modes according to the content of the document, or adjust
each attribute from the submenu. Such a method often requires
trained users, which may not always be desirable. Therefore, it
is necessary to integrate an automatic document image classifi-
cation model into the printer firmware.

There are many research papers on document image classi-
fication [2–6]. However, they are not all suited for use in entry-
level printers due to the memory and computational complexity
restrictions of the printer firmware. To avoid such problems, Lu
et al [7] developed a low-complexity algorithm using SVMs and
several features to classify text, photo, and mixed documents. Xu
et al [8] extended the approach by adding more features and two
additional classes highlight and faded document. The features
in [8] are

• Luminance and chroma flatness scores describing the
spread of the histograms.
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• Color variability score indicating color consistency by
measuring the height of the histogram bins.

• Text edge count based on counting the number of pixels that
differ by 100 in gray value on a scale of 0 to 255 from their
adjacent pixels.

• Chroma around text indicating the distribution of chroma
around text edges.

• Color block ratio based on counting the number of 32×32
non-overlapping blocks with at least 10% chromatic pixels.

• White block count based on counting the number of 32×32
non-overlapping white blocks.

However, [8] is not accurate enough; many highlighted
documents are misclassified into the text category and vice
versa. Note that highlighter marks on the highlighted documents
are made using a highlighter pen after the document has been
printed, as shown in Fig. 1(c). Misclassifying these highlighted
documents is especially problematic for printers. Most high-
lighter pens have bright and fluorescent colors [9], so they reflect
more light than conventional colors. This reflection will result
in unreliable color reproduction by the printer. For example, the
scanned or copied highlighters may appear lighter or darker than
expected or even change colors, i.e. yellow becomes green. The
highlighting may even disappear completely when the scanned
document is printed. For these reasons, the need still exists for
an improved method for differentiating highlighted documents
from other types of documents.

In this paper, we propose two novel gamut-based features
and six low-level color features to capture the color specifics of
the highlighted regions in the image. These new features are
concatenated to the seven features in [8]. The sequential forward
floating selection (SFFS) feature selection algorithm [10] is ap-
plied to find the best feature subset for our application. The opti-
mum set of features is then used to train a directed acyclic graph
support vector machine (DAGSVM) [11] to classify the docu-
ments. We work with a specific model of MFP and a specific
image processing pipeline equipped with four classes of docu-
ments. They are text, photo, highlight, and mixed. Some exam-
ple images are in Fig. 1. Nevertheless, our work can be eas-
ily applied to any MFP by re-measuring the printer gamut. Our
cross-validation results show that the new feature subset signifi-
cantly improved the precision and recall for all document types.

Feature Extraction
In this section, we will describe the detailed procedure for

extracting the new features. Sec. Color Space presents the color
space conversion. Sec. Printer Gamut-Based Features demon-
strates how to retrieve and characterize the highlighter pixels
based on the estimated gamut. Finally, the steps to obtain our
new low-level color features are presented in Sec. Low-Level
Color Features.
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(a) (b)

(c) (d)
Figure 1: Example scanned document images: (a) text, (b) photo,
(c) highlight, and (d) mixed. Note that in highlight documents,
the highlighter marks are drawn manually by the user using a
highlighter pen after the page is printed.

Color Space
The choice of the color space is essential for color image

analysis [12]. RGB is a widely used device-dependent space in
imaging devices. However, it is not perceptually uniform. That
is to say, the distance between the RGB coordinates of two colors
is not proportional to the human perception of such a difference
[13]. For this reason, several perceptually uniform spaces have
been developed, such as CIE L∗a∗b∗ and CIE Lch(a∗b∗). In this
paper, we will extract color features in the CIE Lch(a∗b∗) color
space.

We first convert gamma-corrected RGB to linear RGB using
a 1D gamma uncorrection lookup table (LUT) provided by the
organization sponsoring this research. This LUT is applied sep-
arately to each of the R, G, and B channels of the MFP scanner
output. The conversion is plotted in Fig. 2. Then a 3×3 matrix
transformation is applied to the linearized RGB valuesX

Y
Z

=

0.5313 0.3519 0.1168
0.2742 0.7673 −0.0415
0.0051 0.0510 0.9438

RL
GL
BL

 . (1)

This matrix describes the transformation from the device-
dependent scanner RGB of a particular MFP product to the
device-independent CIE XY Z color space. It was also provided
by the organization sponsoring the research. Then, we convert to
CIE L∗a∗b∗ through the equations provided in [14]. Finally, the
color attributes lightness (L∗), chroma (C∗), and hue (h) can be
computed as

L∗ = L∗,

C∗(a∗,b∗) =
√

a∗2 +b∗2,

h(a∗,b∗) = arctan
(

b∗

a∗

)
.

(2)

Figure 2: The gamma uncorrection conversion from gamma-
corrected RGB to linear RGB.

Here, L∗ corresponds to how light or dark a color is, C∗ repre-
sents the color intensity, and h describes the appearance of color
– color in its pure form, as in red, green, or blue.

Printer Gamut-Based Features
In our discussion here, a gamut is the range of colors that

can be reproduced by the printer. In this paper, we only work
with printed colors as sensed by a scanner, which has its own
gamut of colors that can be uniquely sensed. However, generally,
the scanner gamut is larger than that of the printer. So we assume
here that the printer gamut is strictly contained within the scanner
gamut, and that the scanner gamut contains all highlighter colors.

Given the fact that most colors painted by highlighter pens
cannot be accurately reproduced by the printer, we will look at
chromatic pixels in the scanned image lying outside of the printer
gamut. We follow the procedure described in [14] to estimate
the gamut using the test page shown in Fig. 3 (a), which has
been printed with our target printer, and then scanned with our
target scanner. The resulting gamut is shown in Fig. 3 (b). In-
spired by [15], we segment the CIE Lch(a∗b∗) space into 18 non-
overlapping 20-degree hue slices. Then the gamut boundary of
each hue slice is computed as the convex hull [16] that encom-
passes all points within the hue slice [17]. We refer to such a
convex hull as a gamut hue sector. The vertices of the gamut
sectors (convex hulls) are stored in counterclockwise order to fa-
cilitate later computations. We will soon compare each image
and the gamut at every 20-degree hue slice.

Furthermore, by visual inspection, we note that some high-
lighter colors, such as yellow and orange, are softer than others,
while others, such as magenta and purple, are more visible. From
the plots of the four example highlighter patches in Fig. 7, one
can see that the range of chroma and lightness varies from one
hue slice to another. Thus, we propose to use hue-slice depen-
dent chroma and lightness thresholds to improve the accuracy of
highlighter pixel characterization. The thresholds are measured
based on a scanned sheet of paper containing assorted colors of
highlighter pen marks. It can also be seen from Fig. 7 that many
highlight pixels are out of the printer gamut, adding credence to
our claim that the highlighted regions often cannot be reliably
reproduced. We assume that the chroma and lightness values of
a highlight pixel should each fall between two thresholds. From
the lightness and chroma 2D histogram in Fig. 4, we note that
high chroma/low lightness values could be solid colors that are
from a photo or some graphics, and low chroma/high lightness
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(a)

(b)
Figure 3: (a) The printed and scanned test page used to estimate
the gamut. (b) The estimated gamut in CIE L∗a∗b∗ space. Each
dot corresponds to the mean L∗a∗b∗ values of a patch.

values could be the color of the media. Therefore, to speed up
the subsequent computations, such colors can be excluded.

Now, we are going to compare each scanned image and
the printer gamut at each hue slice. Specifically, we use the
following procedure to extract the highlight pixels of interest.
For each 20-degree hue slice s, we first compute a set of im-
age pixels S s = {(C∗,L∗) | C∗ ∈ [C∗sLB,C

∗s
UB],L

∗ ∈ [L∗sLB,L
∗s
UB]},

where C∗sLB,C
∗s
UB,L

∗s
LB, and L∗sUB are the lower and upper bounds

of the chroma and lightness, respectively, of hue slice s. Note
that the set S s depends on a specific image and we will repeat
this process for each image in the dataset to compute their own
feature values. Then, we check if each pixel in S s is inside the
gamut hue sector or not. Given an edge of the s-th gamut hue
sector defined by the vertices Vs

i (C
∗s
i ,L∗si ) and Vs

i+1(C
∗s
i+1,L

∗s
i+1),

0 ≤ i ≤ N− 2, and a pixel Ps
j(C
∗s
j ,L∗sj ) ∈ S s, if that pixel lies

in the exterior of the gamut hue sector as shown in Fig. 5, then
based on [18], ∃i ∈ {0, ....,N−2} such that

(V s
i+1−V s

i )× (Ps
j −V s

i )< 0, (3)

(a)

(b)
Figure 4: Lightness and chroma 2D histogram plots of a (a) text
image and a (b) photo image. The original images are Fig. 1 (a)
and (b).

where × denotes cross product. Here N is the total number of
vertices of the gamut hue sector. Note that the sector is closed
since we require that Vs

N−1(C
∗s
N−1,L

∗s
N−1) = Vs

0(C
∗s
0 ,L∗s0 ), and

again the vertices are labeled in the counterclockwise orienta-
tion.

Now that the highlight pixels of interest are recognized,
we can design some features to describe them. We propose to
use highlight hue count and maximum highlight strength. The
first feature is designed to count the number of highlight colors
marked on the document image. The second feature is designed
to compute the average distance from each highlight color to the
printer gamut boundary for each hue sector. Then, we take as
our feature value, the maximum over all the hue sectors of this
average distance.

To compute the first feature, we iterate through all hue
slices, and count the number of highlight pixels in each slice.
If there are a sufficient number of highlight pixels, i.e. at least
1% of the image pixels in the hue slice are highlight pixels, then
the hue slice will be counted towards the total number of high-

Figure 5: Visual aid for Equation (3).
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light hues. As for the second feature, we first need to calcu-
late the distance from each highlight pixel to its corresponding
gamut hue sector. For the hue sector s, let Ps

k be the k-th high-
light pixel in the gamut sector s. As illustrated in Fig 6, there are
three cases depending on the relative location of the pixel with
respect to the gamut sector on the lightness-chroma plane. Let
rs

i,k =
(Vs

i+1−Vs
i )·(Ps

k−Vs
i )

‖Vs
i+1−Vs

i ‖2 , and P′sk be the projection of Ps
k to the

edge Vs
i+1−Vs

i of the hue sector s. Then, the distance from Ps
k

to the edge [19] is

ds
i,k =


‖Ps

k−Vs
i‖, if rs

i,k ≤ 0

‖Ps
k−Vs

i+1‖, if rs
i,k ≥ 1

‖P′sk −Ps
k‖, otherwise.

(4)

Thus, the shortest distance from the highlight pixel to the pe-
riphery of the gamut sector s is ds

min,k = min
i=0,...,N−2

ds
i,k. Next, we

compute the average distance d̄s over all Ks outlier pixels for the
gamut hue sector s according to d̄s = 1

Ks ∑
Ks−1
k=0 ds

min,k. Finally,
the second gamut-based feature can be computed as

d̄max = max
s=0,...,17

d̄s. (5)

Figure 6: Visual aid for Equation (4). The three cases left to right
correspond to the equations from top to bottom in Equation (4),
respectively.

Low-Level Color Features

We use two properties of the highlighted regions in order to
design the low-level color features. First, highlighter marks are
typically bright and relatively translucent colorants drawn on a
light-colored background [9]. So the average value of the light-
ness and chroma in a highlighted image block should be higher
than those of a non-highlighted block. Second, within a small re-
gion, i.e. 32×32 pixels in a document scanned at 75 dpi or 0.427
in × 0.427 in, there is usually a single highlighter color, and the
fluctuations in chroma and lightness should therefore be smaller
than those in the mixed and photo images that contain various
colors. On the basis of these two properties, we developed six
color-moment features [20], namely minimum block mean, max-
imum block standard deviation, and the minimum block unnor-
malized skewness of the lightness and chroma channels to de-
scribe the characteristics of the color distribution of the high-
lighted image blocks.

To be specific, we partition the query image into 32× 32
non-overlapping blocks, and compute the color moments for both
the L∗ and C∗ channels within each block. Let the pixel value (L∗

or C∗) of the i-th channel at the j-th image pixel in block l be Ii, j
and the number of image pixels in the block be Q, then the block

Figure 7: Four highlighter patches with their corresponding
gamut hue sectors. The black convex hull indicates the gamut
hue sector within the hue range. The green dots are the (C∗,L∗)
coordinates of the highlight pixels within the hue range.

Figure 8: Illustration of the tree structure of the DAGSVM
model. M = mixed, T= text, P = photo, and H = highlight.

color moments of channel i are defined as:

Ei,l =
1
Q

Q−1

∑
j=0

Ii, j

σi,l =

√√√√ 1
Q

Q−1

∑
j=0

(Ii, j−Ei,l)2

si,l =
3

√√√√ 1
Q

Q−1

∑
j=0

(Ii, j−Ei,l)3

(6)

Finally, we compute the minimum and maximum color moment
values across all blocks. These features are simple, yet effective.
Intuitively, they summarize the chroma and lightness character-
istics of the most prominent block in the image, which will be
the highlighted block, if there is any.

Classification Model
Along the lines of [8], we use a DAGSVM model [11]

to solve the multi-class classification problem. The DAGSVM
model that we use has a tree structure, as shown in Fig. 8. It con-
sists six 1-vs.-1 SVMs, one for each pair of the four classes. At
the root level, the classifier decides if the image is in the mixed or
highlight class. If it does not belong to the highlight class, then
we go to the left child. If it does not belong to the mixed class,
then we go to the right child. This procedure is repeated until the
final decision is reached. The radial basis function (RBF) kernel
is used for all the SVMs.

In our application, different misclassifications are weighted
differently. For example, it is more problematic to misclassify
text as photo than to misclassify text as highlight. If the text

15729th Color and Imaging Conference Final Program and Proceedings



Classifier Output

M T P H

G
ro

un
d

Tr
ut

h M 0 3 5 4

T 3 0 10 2

P 3 10 0 15

H 10 10 10 0

(a)

Classifier Output

M T P H

G
ro

un
d

Tr
ut

h M 114 4 6 5

T 1 80 0 3

P 4 0 96 0

H 5 1 0 81

(b)
Table 1: (a) The error weight matrix W . It shows how different
classification results weight differently towards the total cost. (b)
The leave-one-out confusion matrix U . It summarizes the per-
formance of our classification model. In both tables, M = mixed,
T= text, P = photo, and H = highlight.

image is processed through the photo mode configuration, which
has a smoothing effect, the text strokes will look too blurry. How-
ever, if the text image is processed using the highlight mode con-
figuration, which will move the colors inside the printer gamut,
the reproduction will not be negatively impacted. Therefore, in
the training process for the DAGSVM model, our goal is to min-
imize the weighted error

E = ∑
i, j

Wi, jUi, j, (7)

where Wi, j is the weight of classifying the i-th class as the j-
th class and Ui, j is the number of images in the i-th class being
classified as the j-th class. The matrix W is presented in Table
1 (a). The weights were chosen by engineers working for the
organization sponsoring this research.

Experimental Results
Our dataset consists of the images in [8]. The images were

labelled by engineers working for the organization sponsoring
this research. There are in total 400 images, including 129 im-
ages in the mixed class, 84 images in the text class, 100 images
in the photo class, and 87 images in the highlight class. The im-
age contents include book and magazine pages, posters, portrait
and natural pictures, handwritten notes, lecture slides, and appli-
cation forms. Each image has a size of 825× 638 pixels and a
resolution of 75 dpi.

We evaluate the performance of the model using leave-one-
out cross-validation (LOOCV). LOOCV repeatedly splits the
data points into a training set containing all but one sample point,
and a validation set containing only that remaining sample point.
It provides a confusion matrix that we can use to compute the
weighted error based on Equation (7). We employ SFFS [10]
to select the best feature subset which has the minimal LOOCV
weighted error. In the SFFS process, we start from an empty fea-
ture set and add one of the non-used features to the set to train
the model. Then the cost function is evaluated on the validation
dataset. The one feature that gives us the lowest cost will be

included. After each inclusion, a number of exclusions will be
performed to the current feature set if the cost can be further de-
creased. This process is iterated a number of times until there is
no further decrease in the cost. Our final feature subset, selected
by SFFS, contains 12 features, with 6 from [8] (all but the color
variability score) and 6 new ones (2 gamut-based features and the
first 4 color-moment features). The optimal LOOCV confusion
matrix is shown in Table 1 (b).

Table 2 summarizes the results according to different docu-
ment image types in terms of precision and recall, as well as the
overall accuracy and weighted error. Here, precision and recall
are defined [21] as

Precision =
TP

TP+FP
Recall =

TP
TP+FN

, (8)

where TP, FP, and FN represent true positive, false positive, and
false negative, respectively. It can be computed that the decrease
in the weighted error is 61% and the increase in the accuracy is
10.8%. For the highlight class, the precision rises 11.5% and the
recall rises 13%. These new results are relative to those reported
in [8].

Precision (%) Recall (%) Accur-

acy(%)
E

M T P H M T P H

[8] 80.6 76.2 89.0 81.6 83.9 81.0 84.0 78.0 82.0 3.6

Ours 88.4 95.2 96.0 93.1 91.9 94.1 94.1 91.0 92.8 1.4

Table 2: Precision and recall (Equation (8)) for different docu-
ment types and the overall accuracy and weighted error (Equa-
tion (7)). M = mixed, T= text, P = photo, and H = highlight.

Conclusion
A set of highlighter features is proposed. We utilize the

characteristics of the highlighter colors and their distribution to
describe the highlighted document images. The identification
performance of the highlight class was evaluated by means of
precision and recall. The overall performance of the model was
measured by accuracy and the weighted cost. The newly added
features significantly enhance the performance and substantially
decrease the cost.
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