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Abstract
A database of realizable filters is created and searched to ob-

tain the best filter that, when placed in front of an existing camera,
results in improved colorimetric capabilities for the system. The
image data with the external filter is combined with image data
without the filter to provide a six-band system. The colorimetric
accuracy of the system is quantified using simulations that include
a realistic signal-dependent noise model. Using a training data
set, we selected the optimal filter based on four criteria: Vora
Value, Figure of Merit, training average ∆E, and training maxi-
mum ∆E. Each selected filter was used on testing data. The filters
chosen using the training ∆E criteria consistently outperformed
the theoretical criteria.

Introduction
The colorimetric accuracy of a digital color camera is limited

by the spectral sensitivity of the optical system and the presence
of noise. Both of these limitations must be considered when de-
signing a new system or when determining how best to augment
an existing device. If color filters are used in a design, it is helpful
to impose constraints on the filters to ensure they can be readily
manufactured.

Studies of camera noise have shown that the dominant noise
source is caused by the photon counting process, which can be
modeled with a Poisson probability density function [1]. For
a Poisson process, the mean of the process equals the vari-
ance, which implies that the noise in the system will be signal-
dependent in nature.

The spectral sensitivity of the system is generally not a lin-
ear transformation of the CIEXYZ color matching functions. This
mismatch implies that colors can look the same to the human
visual system but be reported as different values by the camera.
Likewise, two colors that look different to the human visual sys-
tem can be recorded as the same value by the camera.

There has recently been work on the problem of finding an
optimal filter to place in front of a camera, resulting in an over-
all system that is “closer” to being within a linear transformation
of the CIEXYZ color matching functions (i.e., closer to satisfy-
ing the Luther condition [2]). Making use of the Vora Value [3],
Finlayson and Zhu looked at finding an optimal filter [4, 5, 6, 7].
Vrhel looked at finding an optimal filter that maximized Sharma’s
Figure of Merit (FOM) in the presence of signal independent
noise [8]. None of these approaches considered realizability of
the filters, although they did impose smoothness constraints on
the solution. Realizability was used in [9], but that work involved
the complete design of the system spectral response rather than
altering an existing system.

Here we look at a slightly different problem, which is one
where we consider that we have two images from our camera: one

obtained with a filter in front of the camera, and another without
the filter, as illustrated in Figure 1. This approach effectively pro-
vides six bands of information to use. We also consider filters
from a database of known available filters and make use of a real-
istic signal-dependent noise model in simulations. Using readily
available filters makes it possible to easily move forward to the
next step of capturing real image data.

Figure 1. Image captured without filter and with filter

Mathematical notation
If we assume we can mathematically sample the visible spec-

trum at a sufficient number of wavelengths, n, to allow an accurate
representation of the spectral information [10], we can model the
camera color imaging system using a vector notation. The imag-
ing model is given by

ci = HT Lri +ni, (1)

where the columns of the nxm matrix H define the m spectral
separation channels for the camera,1 the nxn diagonal matrix L
represents the illuminant under which the scene is recorded, the
n-element vector ri represents the reflectance spectrum at pixel
location i, the m-element vector ni represents the additive noise at
location i, and ci is the m-element vector obtained at the camera
pixel index location i. Note that we have used a single index i for
the location for simplification.

Placing a filter with transmittance f in front of the system and
merging the resulting values with the unfiltered values is modeled
as

di = [H HF]T Lri +ni = MT Lri +ni, (2)

where di is the 2m-element vector obtained for pixel location i,
F = diag(f) is a diagonal matrix whose diagonal elements are the
filter transmittance values at the sampled wavelengths, ni is the
noise for the filtered and unfiltered scene, and MT = [H HF]T .

1In most cases m = 3.
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Ideally, the complete system response would be within a lin-
ear transformation of the CIEXYZ color matching functions. In
general, it is difficult to achieve this goal. Short of this goal, given
the recorded value di or ci with our camera, we wish to obtain
an estimate of the CIEXYZ value of the spectrum Lri, which is
mathematically expressed as

ti = AT Lri, (3)

where the columns of the matrix A are the sampled CIEXYZ color
matching functions.

There are a number of ways to obtain such an estimate. One
common approach is to use a linear estimator and, in particular,
the linear minimum mean square error (LMMSE) estimator, since
we can readily compute this estimator analytically. Working from
Equation 2, for the LMMSE estimator, the matrix Blmmse and vec-
tor blmmse are the solution to the optimization problem

(Blmmse,blmmse) = argmin
B,b

E
{
||Bd+b− t||2

}
, (4)

where E{.} denotes the expectation operator. The estimated
CIEXYZ tristimulus value is given by

t̂i = Blmmsedi +blmmse. (5)

The solution to Equation 4 is given by

Blmmse = AT LKrLM(MT LKrLM+Kn)
−1 (6)

blmmse = AT LE {r}−BlmmseE {d} , (7)

where

Kr = E
{

rrT
}
−E {r}E {r}T (8)

is the covariance matrix of the radiant spectra as seen by the cam-
era, and

Kn = E
{

nnT
}

(9)

is the noise covariance matrix, assuming the noise is zero mean.
Note that if we are working with the recorded value of ci

from Equation 1, instead of the value of di from Equation 2, then
simply replace the matrix M with matrix H in the above equations.

In some cases, the spectral sensitivity of the system is not
known or is difficult to obtain. In these situations, a linear trans-
formation can be obtained through the use of a data fit on a known
set of reflectance spectra. This approach is sometimes referred to
as a pseudo-inverse solution [11]. The problem can mathemati-
cally be posed as the following: Given a set of measurements di
(Equation 2) and ti (Equation 3) on samples i = 1, ..., p, the ma-
trix Bpseudo and vector bpseudo are the solution to the optimization
problem

(
Bpseudo,bpseudo

)
= argmin

B,b

p

∑
i=i
||Bdi +b− ti||2. (10)

The solution is given by

Bpseudo = TDT
(

DDT
)−1

(11)

bpseudo = t̂avg−Bpseudod̂avg, (12)

where

t̂avg =
1
p

p

∑
i=1

ti (13)

d̂avg =
1
p

p

∑
i=1

di (14)

T =
[
t1, . . . , tp

]
−
[
t̂avg, . . . , t̂avg

]
(15)

and

D =
[
d1, . . . ,dp

]
−
[
d̂avg, . . . , d̂avg

]
. (16)

A similar fit can be made between the ci values (Equation 1) and
the ti values.

Camera noise model
As previously mentioned, the noise process in a digital cam-

era is signal dependent [1]. The measurement of light on a sensor
is an example of a process that counts the number of arrival events.
In this case, the accumulated charge for a sensor element is related
to the number of photons that arrived at the sensor (and resulted in
a charge increase). For a constant light source on a sensor over a
fixed period of time, there is a statistical variability in the number
of photons that will arrive over that period. This uncertainty can
be modeled by a Poisson probability density function (PDF). A
Poisson PDF has the property that the mean is equal to the vari-
ance. This implies that the variance of the light measurement will
depend upon the average level of light on the sensor. At the large
counts that are received at the sensor, the Poisson PDF is well ap-
proximated by a Gaussian PDF with the variance being a scaled
factor of the mean.

For a given camera, one can estimate the relationship be-
tween the mean measurement value and the variation of the mea-
surement through the measurement of samples of uniform re-
flectance. Figure 2 shows such measurements for one channel of
a Nikon D750. This plot has the signal mean on the x-axis and the
signal variance on the y-axis. The slope of this data is fit with a
line, which provides an estimate for the relationship of the signal
value to the noise variance for the sensor data.
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Figure 2. Signal mean vs. signal variance for Nikon D750. Slope of fitted

line is 0.4
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If the slope of channel k is given by the term αk, and the
noise free measurement is given by the value dk, then the noise
on that sample is modeled with a zero mean Gaussian distribution
with a variance given by

σ
2
k = αkdk. (17)

Quantifying system colorimetry
There are several approaches to quantifying the colorimetric

accuracy of a camera system. One approach is to make use of
the Vora Value, which provides a measure of how well the space
defined by the spectral sensitivity of the system matches the space
defined by the CIE color matching functions [3]. For a system
given by Equation 2, the Vora Value between it and the CIE color
matching functions with illuminant L is

ν(LA,G) =
Trace

[
PLAG(GT G)−1GT ]

3
, (18)

where G = L [H HF]T and

PLA = LA(AT LLA)−1AT L. (19)

The term PLA is the orthogonal projection operator onto the sub-
space defined by the matrix LA, which is the illuminant multi-
plied by the CIEXYZ color matching functions. Similarly, the
term G(GT G)−1GT is the orthogonal projection operator on the
subspace defined by the matrix G. The Vora Value is bounded
between zero and one. A value of one indicates that the subspace
defined by matrix G contains the subspace defined by LA. A
value of zero indicates that the subspaces are orthogonal.

Sharma provided a number of Figures of Merit (FOM) that
are similar to the Vora Value but take into account the statistics
of the spectral data that is being measured as well as the noise
statistics [12]. One form of the FOM is given by

q(LA,G,Kr,Kn) =
τ(LA,G,Kr,Kn)

Trace [PLAKr]
, (20)

where

τ(LA,G,Kr,Kn)=Trace
[

PLAKrG
(

GT KrG+Kn

)−1
GT Kr

]
.

(21)

Like the Vora Value, this FOM has a maximum of one, indicating
an optimal system, and a minimum of zero, indicating a system
that would perform poorly.

Another way to quantify the performance of a system is sim-
ply to look at the simulated performance of the system on a set of
reflectance spectra and compute the color errors that occur. For
example, one could use a set of spectra, such as those defined
in [13]. If these spectra are defined to be ri for {i = 1, . . . , p},
and the LMMSE estimator is used to map from camera values to
CIEXYZ values, then one could use the average ∆E value across
the data set as a measure of goodness, which is given by

∆Eavg =
1
p

p

∑
i=1
||F (Blmmsedi +blmmse)−F (ti) ||, (22)

where F (.) is the vector valued function that maps CIEXYZ val-
ues to CIELAB values.

Alternatively, one could use the maximum ∆E value across
the data set, which is given by

∆Emax = max
i
||F (Blmmsedi +blmmse)−F (ti)||. (23)

For accurate modeling, the effects of noise should be in-
cluded in determining the optimal filter. Noise can be considered
by running multiple realizations at a particular signal-to-noise ra-
tio and looking at the resulting statistics.

For example, signal dependent noise could be added to the
measurements to provide di values, via Equation 2, for a set of p
spectra. Equation 22 is then used to compute the ∆Eavg for the
set of p spectra. This process is repeated q times, each with a new
noise realization, giving q ∆Eavg values. The best filter is the filter
that minimizes

1
q

q

∑
i=1

∆Eavg. (24)

A similar process can be used for finding the filter that minimizes
the maximum error in the presence of noise.

Filters
To focus on filters that can be readily obtained, a software

tool provided by the filter manufacturer Hoya Corporation was
used to generate filter transmittances. The application allowed
the selection of 108 filter types and the specification of the fil-
ter thickness. For each filter type, ten filters were computed for
thicknesses on a logarithmic scale from a minimum of 0.5 mm to
a maximum of 9 mm. (This was the maximum range allowed by
the software.)

Given this data set of filters and the spectral response for a
Nikon D90, as shown in Figure 3, an exhaustive search was per-
formed to determine the optimal filters using the following speci-
fications:

• Find the filter that provides the largest Vora Value for the
camera system. Denote this filter as fVV .

• Find the filter that provides the largest Figure of Merit for
the camera system for a noise slope α . Denote this filter as
fFOM|α .

• Find the filter that when used on a large set of reflectance
spectra results in the minimum average ∆E2000 value on
that data set for noise slope α . Denote this filter as
favg∆E00|α .

• Find the filter that when used on a large set of reflectance
spectra results in the minimum maximum ∆E2000 value
on that data set with noise slope α . Denote this filter as
fmax∆E00|α .

For our study, we used values for α of [0.0, 0.1, 0.2, 0.3, 0.4]
that linearly step from no noise to a noise level typically seen in
modern digital cameras [1].

The data set used for the reflectance spectra was from [13],
and a uniform illumination was used (meaning an illumination
that is spectrally flat). For each noise level, 1000 realizations were
run for each filter allowing us to compute average performance
across the data set. This data set was defined as the training data
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set, since it was used for the filter selection as well as the deter-
mination of the LMMSE estimator in the next section. For testing
the performance, the reflectance spectra from a Digieye DT (240
color patches) chart were used to assess the robustness of the so-
lution.

The Vora filter and FOM filters are shown in Figure 4. The
best Vora Value filter was a green filter with a peak wavelength
around 535 nm. In the presence of noise, the FOM filters tended
to pass all wavelengths with a possible reduction in the red wave-
lengths. The filters that do best in terms of ∆E2000 were yellow
in nature and are shown in Figure 5. With noise present in the
system, the 50% cutoff of these filters ranged from 460 nm to 480
nm.
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Figure 3. Nikon D90 camera spectral sensitivities
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Figure 4. Selected filters using Vora Value and FOM

For a given filter, the spectral response of the system is the
combination of the camera with and without the filter. For each
system response, the orthogonal projection onto the space defined
by the CIEXYZ color matching functions of the six-band system
was performed. The projections for three representative cases are
shown in Figures 6—8. For comparison, the orthogonal projec-
tion of the unfiltered camera system is shown in Figure 9. These
plots represent a visual display of how well the spectral response
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Figure 5. Selected filters using ∆E statistics
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Figure 6. Projection of Nikon D90 camera spectral sensitivities with and

without favg∆E00|0.4 filter onto space defined by CIEXYZ color matching func-

tions
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Figure 7. Projection of Nikon D90 camera spectral sensitivities with and

without fFOM|0.4 filter onto space defined by CIEXYZ color matching functions
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Figure 8. Projection of Nikon D90 camera spectral sensitivities with and

without fVV filter onto space defined by CIEXYZ color matching functions

of the system can approximate the CIEXYZ color matching func-
tions in a least-squares sense. Subjectively, using the Vora Value
filter provides the best looking approximation to the CIEXYZ
color matching functions (Figure 8).

400 450 500 550 600 650 700
nm

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C
M

F 
va

lu
e

Figure 9. Projection of Nikon D90 camera spectral sensitivities onto space

defined by CIEXYZ color matching functions

Simulations
The filters found above were used in a simulation pro-

cess, whereby reflectance spectra were mathematically recorded
at noise levels of α equal to [0.0, 0.1, 0.2, 0.3, 0.4]. Recordings
were done with and without the filter, which provided six bands
of information for each case. The illumination used for recording
and as a target to map to was the uniform illuminant (meaning an
illumination that is spectrally flat). As mentioned in the previous
section, a Digieye DT (240 color patches) chart was used tor test-
ing the performance and the set from [13] was used as a training
data set to determine the LMMSE estimator.

The LMMSE estimator was used to transform the simulated
recorded values of the testing and training data to CIEXYZ values.
CIE ∆E2000 values were computed across the testing and training

data sets. From these values, an average and max ∆E2000 value
was computed. To quantify the performance of the system under
noise, this simulation process was repeated 1000 times and the
average and max ∆E2000 values were averaged across the noise
realizations. The results for the training data are given in Table
1, and the results for the testing data are given in Table 2. The
smallest errors within each noise level section are shown in bold
red entries. The last column in the table shows the percent reduc-
tion in the average ∆E2000 error compared to the no-filter case.

With no noise, the improvement from capturing another im-
age with the filter is significant. This is true for the training and
the testing data, regardless of the approach used to select the filter.
When noise is introduced, the performance of all the filters is sig-
nificantly reduced, but still provide improvement. On the testing
data, the FOM filter performs significantly worse compared to the
other filters. The Vora Value filter, which does not consider the
data set nor the noise level, does well at all noise levels and for
the training and testing data set. The filters that minimized the
average ∆E2000 error on the noisy training data did the best on
the testing data. In the testing and training data sets, these filters
were always equal to or better than the theoretical criteria (Vora
and FOM filters).

It should be noted that when noise is present in the system,
one could capture two no-filter images and average these two im-
ages to reduce the noise level. The effect would be equivalent to
reducing the α value by a factor of two. Meaning that taking two
no-filter images at an α value of 0.4 and creating one image would
provide the same performance as an α value of 0.2 (likewise, two
images at α of 0.2 would provide the same performance as α of
0.1). Note that this performance reduction is in regard to the mean
squared error in CIEXYZ space not necessarily ∆E. From the re-
sults in the table, the Vora Value filter and the filters that minimize
∆E2000 error still perform better on the testing data set compared
to the lower noise, no-filter case (meaning we are better off using
an appropriately shaped filter rather than capturing two no-filter
images) . Likewise, since the FOM filter at higher noise levels
is almost spectrally flat, its performance is similar to the no-filter
case at a noise level that is half the FOM filter noise level — and
the FOM filter does not do as well as the Vora Value or minimum
∆E filters, at the higher noise levels.

Summary
The results of these simulations indicate that the use of an

additional external filter when capturing an image with a digi-
tal camera can provide data that allows for improved colorimetry
even in the presence of noise. With no noise present in the sys-
tem, the average ∆E2000 errors on the testing data were reduced
by 86%. With noise levels found in a typical imaging system, the
average ∆E2000 errors on the testing data were reduced by 38%.
The FOM filter did not perform as well as the Vora Value filter
in the presence of noise, which was unexpected, since the FOM
filter is selected using knowledge about the level of noise in the
system. This result warrants further research. The next step in
this work is to capture image data with and without an optimally
determined filter and to apply the necessary processing steps on
that image data to provide an image with improved colorimetry.
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Table 1: Simulation results training data [smallest errors given
in red]

Filter α Avg. Max. Avg. ∆E2000
∆E2000 ∆E2000 % Reduction

No-filter 0.0 0.69 7.65 0%
fVV 0.0 0.17 3.00 75.4%

fFOM|0.0 0.0 0.11 1.06 84.1%
favg∆E00|0.0 0.0 0.11 1.06 84.1%
fmax∆E00|0.0 0.0 0.11 1.06 84.1%

No-filter 0.1 1.08 7.91 0%
fVV 0.1 0.81 4.10 25.0%

fFOM|0.1 0.1 0.92 9.54 14.8%
favg∆E00|0.1 0.1 0.73 4.62 32.4%
fmax∆E00|0.1 0.1 0.75 3.92 30.6%

No-filter 0.2 1.32 8.10 0%
fVV 0.2 1.08 5.42 18.2%

fFOM|0.2 0.2 1.10 7.80 16.7%
favg∆E00|0.2 0.2 0.96 5.14 27.3%
fmax∆E00|0.2 0.2 0.97 5.02 26.5%

No-filter 0.3 1.52 8.32 0%
fVV 0.3 1.28 6.36 15.8%

fFOM|0.3 0.3 1.23 8.11 19.1%
favg∆E00|0.3 0.3 1.14 5.89 25.0%
fmax∆E00|0.3 0.3 1.15 5.89 24.3%

No-filter 0.4 1.69 8.63 0%
fVV 0.4 1.44 7.12 14.8%

fFOM|0.4 0.4 1.34 8.14 20.7%
favg∆E00|0.4 0.4 1.29 6.55 23.7%
fmax∆E00|0.4 0.4 1.29 6.55 23.7%
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