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Abstract. Causes of numerical pathology in formulas for reflectance
factor (R), transmittance factor (T ), and reflectance factor over a
perfectly black background (R0) under the Kubelka–Munk model
are posited, and alternate formulas believed less prone to these
pathologies are introduced. Suggestions are offered not only for R,
T , and R0, but also for intermediate or adjunct quantities used in
the main formulas. Computational experiments were performed to
verify that the new models produce the same results as the existing
ones under non-pathological conditions, exhibit acceptable levels
of precision in a customary floating-point environment, and are
more robust with respect to edge cases where an input quantity
is zero. The new formulas performed well, with some evidence
that the new hyperbolic forms provide better accuracy than their
exponential counterparts. c© 2021 Society for Imaging Science
and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2021.65.5.050407]

1. INTRODUCTION
Kubelka and Munk investigated optical properties of ho-
mogeneous layers using a system of two first-order linear
differential equations, one equation each for two fluxes,
each traversing a layer illuminated on one side in two
directions: the first away from the illuminated surface, and
the second back toward the illuminated surface [1]. There are
several excellent references that provide an introduction to
Kubelka–Munk theory, includingWyszecki and Stiles [2] and
Judd and Wyszecki [3]. Philips-Invernizzi et al. [4], provide
a thorough literature review with historical and modern
context. Berns [5] provides an approachable introduction.

The Kubelka–Munk model has been applied to a
wide variety of problems, including colorant mixing [6–8],
astrophysics, remote sensing [9], dentistry [10, 11], color
hardcopy [12], evolutionary biology [13], pulp and paper
science [14], and geology [15].

In this paper, formulas derived from the Kubelka–Munk
model (and Gurevič’s [16] nearly identical model), will
be examined to identify, and, hopefully mollify, issues
that may arise during machine computation. The formulas
are to compute R, the reflectance factor of a colorant
layer atop a background of known reflectance factor; T ,
the transmittance factor of a colorant layer; and R0, the
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reflectance factor of a colorant layer atop a perfectly black
backing.

1.1 Computational Pathology in Formulas for
Kubelka–Munk Models
Pathology, without further qualification, normally pertains
to the study of disease. Here, ‘‘numerical pathology’’ and
‘‘computational pathology’’ refers to undesirable outcomes
from calculations. There are two main computational
pathologies examined in this paper: computational failures,
and excessive loss of precision.

A computational failure is an error at run time that
results in a crash, an exception being raised (whichmay result
in a crash), or a ‘‘Not-A-Number’’ (NaN) result. The specific
computational failures most frequently encountered by the
author in work with Kubelka–Munk models have been:

• Attempting to take the hyperbolic cotangent of 0; and
• Attempting to divide by 0 or take the reciprocal of 0.

Kubelka clearly stated that the hyperbolic forms were
intended for hand computation. A human operating a
calculating machine can quickly detect a fault and apply
an alternate formula; Kubelka provided several of these in
his 1948 paper. Anticipating and catching all fault-inducing
situations, and handling them appropriately, is not as simple
when the calculations are performed by a computer program.

A second form of computational pathology is excessive
loss of precision. Precision is quantified in digits, usually
decimal digits, or binary digits (bits), and is related to
the concept of significant digits. Floating-point numbers
are stored with a finite amount of precision, usually either
24 or 53 bits of binary precision. These translate into
approximately seven and 16 decimal digits of precision,
respectively.

With some exceptions (such as multiplying or dividing
by±1), floating-point operations result in a loss of precision.
In particular, a large amount of precision may be lost when
two floating-point numbers close in value are subtracted
[17, 18]. In Figure 1, two floating-point values in IEEE-724
half-precision are subtracted. In this format, there are 12
digits of binary precision, or approximately 3.6 decimal
digits of precision. The difference, unfortunately, has only
five significant binary digits (approximately 1.5 significant
decimal digits),meaning a loss of seven binary digits, ormore
than two decimal digits.
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Figure 1. Example of loss of precision.

The seven decimal digits offered by single precision,
and even the nearly 16 digits afforded by double precision,
can be quickly eroded by injudicious arithmetic operations.
Unlike computational failures, precision loss can nuanced
and difficult to detect.

1.2 Problem, Goals, and Approach
To succinctly state the problem, pathological results, includ-
ing faults and loss of precision, may arise when performing
calculations using the Kubelka–Munk model. These will be
particularly acute with machine computation.

The goals of this paper, with respect to formulas based
on the Kubelka–Munk model, are:

• Identify pathological calculations resulting in faults and
excessive precision loss.
• When more than one formula is available, determine
which is less prone to these pathologies.
• Rule out possible suspected causes of pathology.
• Offer alternate formulas less prone to faults and/or
excessive loss of precision.
• In short, establish a nucleus of best practices for
machine computation.

The approach may be gleaned from the organization
of this paper. In the next section, existing formulas will
be examined for potential causes of pathology. In the
following section, identities that have potential to reduce
computational pathologies will be derived. Next, alternate
formulas will be evaluated in customary and high-precision
computational environments. Finally, conclusions and rec-
ommendations for best practices will be offered.

SYMBOLS ANDNOTATION
R Reflectance factor, particularly of a colorant layer in

optical contact with a backing

R∞ Reflectivity, i.e., the reflectance factor of a colorant layer
so thick that its reflectance factor is independent of the
background

Rg Reflectance factor of the backing or substrate

R0 Reflectance factor of the colorant layer over a perfectly
absorbing background (R, when Rg = 0)

T Transmittance factor (here, of a colorant layer)

X Thickness of the colorant layer

K Coefficient of absorption of the colorant; the proportion
of light absorbed in a layer of infinitesimal thickness dx
will be Kdx .

S Coefficient of scatter of the colorant; the proportion
of light scattered in a layer of infinitesimal thickness dx
will be Sdx .

a Used in so-called hyperbolic solutions; a= K+S
S

b Also used in hyperbolic solutions; a2
− b2

= 1, so
b=
√
a2− 1

L =
√
(K + S)2− S2 =

√
K (K + 2S)

M =K + S

P = L+K + S= L+M

Notes
The notation used in this paper follows, wherever possible,
that used by Kubelka [19]. L is from Gurevič [16]. The
last two quantities, M and P , are introduced here for
convenience.

Other than layer thickness, X , the quantities are depen-
dent on wavelength, and, by the first law of thermodynamics
[20, p. 130], cannot be negative, nor can a be less than one.

The units for layer thickness are customarily microm-
eters. However, the author has on occasion used grams per
square meter as a convenient surrogate for thickness; it may
be translated into thickness if themass density of the colorant
is known.

The units for K , S, L,M , and P are the reciprocal of the
units used for thickness, e.g., reciprocal micrometers.

All of the other quantities are dimensionless.

2. FORMULAS IN THE PRIOR ART

2.1 Formulas for Reflectance

2.1.1 Kubelka and Munk [1]

R=
(Rg −R∞)/R∞−R∞(Rg − 1/R∞) exp[SX(1/R∞−R∞)]

Rg −R∞− (Rg − 1/R∞) exp[SX(1/R∞−R∞)]
.

(1)

This formula contains four different subtractions, and the
reciprocal of R∞ appears in several places. R∞ will approach
zero as the colorant approaches perfect transparency (i.e.,
as S→ 0). While this may appear rather complicated, there
are other ways to express it in less complicated terms. One
follows immediately below, three more are offered in a later
section of the paper.
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Figure 2. Graph of the hyperbolic cotangent function in the vicinity of
zero.

2.1.2 Kubelka [19]
Kubelka’s so-called hyperbolic solution,

R=
1−Rg (a− b · coth bSX)
a−Rg + b · coth bSX

, (2)

does appear simpler than Eq. (1), and involves two fewer
subtractions. Unfortunately, it contains the hyperbolic cotan-
gent, which is singular at zero, as shown in Figure 2. While
not a problem for hand computation, this is best avoidedwith
machine computation. When any of b, S, or X are zero, an
arithmetical error will occur.

2.2 Formulas for Transmittance
2.2.1 Gurevič [16, p. 756]
Kubelka and Munk did not address transmittance in their
1931 paper. Gurevič, in a paper published slightly earlier
than Kubelka and Munk’s, did provide an expression for
transmittance. Translating Gurevič’s notation (Gurevič’s
parameters were congruent to Kubelka and Munk’s K + S
and S) to that of the present paper, it was:

T =
(1−R2

∞) exp (−LX)
1−R2

∞ exp (−2LX)
(3)

where:
L=

√
(K + S)2− S2. (4)

In a later section, Lwill be written in amore numerically
favorable form, further interpreted in terms of the Kubelka–
Munk framework, and employed in formulas for machine
computation.

2.2.2 Kubelka [19]
Kubelka offered a hyperbolic solution for transmittance:

T =
b

a sinh bSX + b cosh bSX
. (5)

This is susceptible to instability if b is small, which
it will be for white media. A very small value of b,
S, or X can make the first term in the denominator
effectively vanish through floating-point underflow because

sinh(0) = 0. Further, because it is a factor in the second
term, it can likewise cause this term to become pathologically
small. A singularity will of course result if both terms in the
denominator vanish.

2.3 Formulas for R0
While R0 is a special case of reflectance, Kubelka and
Munk [1] disclosed the following formula (their Eq. (6)) for
R0, the reflectance of a colorant layer over a perfectly black
substrate. In the notation used in the present paper, it was:

R0 =
exp[(1/R∞−R∞)SX ] − 1

1/R∞ exp[(1/R∞−R∞)SX ] −R∞
(6)

and may be easily derived from Eq. (1) by substituting 0 in it
in place of Rg .

Kubelka [19] also offered two related hyperbolic expres-
sions. The first,

R0 =
1

a+ b coth bSX
, (7)

is easily obtained from Eq. (2); his second may be obtained
by multiplying both numerator and denominator of Eq. (7)
by sinh bSX :

R0 =
sinh bSX

a sinh bSX + b cosh bSX
. (7a)

Equation (6) does have the reciprocal of R∞, which is
pathological as S→ 0. As the lead factor in the first term
of the denominator, it is easily remedied. The instances in
the two exponentials, however, will not yield to this simple
expedient.

The pathology of Eq. (7) is identical to that of the
hyperbolic form for reflectance given in Eq. (2). Inasmuch
as their denominators are identical, the potential pathologies
of Eqs. (5) and (7a) are likewise the same.

3. REMEDIATIONOF PATHOLOGIES
Kubelka [19] discussed several approximate formulas for
R, T , R0, and related quantities. While performing hand-
computation, certain edge cases that might cause problems
could be avoided, and the calculation could be simplified.
Kubelka’s Table III, and the text that introduces it, elegantly
address several special cases through 28 simplified formulas.

For machine computation, the general case/special case
approach championed and enabled by Kubelka may not be
the best strategy. First, very specific boundaries between
the general case and each of the special cases are required.
Logic and branching to handle the special cases complicate
coding and will require a much larger testing and debugging
effort. Further, with machine computation, discontinuities
and other inconsistencies as calculation switches between
general case and one of the special cases are undesirable,
and, hopefullymay be avoided. Enabling robust computation
using general-case formulas for all cases, eliminating the
need to identify, code, and test edge cases, is the goal of this
paper.
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3.1 Enabling Lemmatic Foundations
In the following section, strategies for more robust machine
computation of R, T , and R0 under the Kubelka–Munk
model will be derived and discussed, using some enabling
lemmas presented here.

Recall Gurevič’s L (Eq. (4)); we avoid a subtraction if we
write instead:

L=
√
K (K + 2S). (4-R)

Two convenient forms for R∞ are worth knowing:

R∞ = a− b=
1

a+ b
. (8)

By definition, a = (K + S)÷ S, and b =
√
a2− 1. Another

way to represent b appears several times in the literature, and
is easily derived from these two definitions:

b=

√
K
S

(
2+

K
S

)
. (9)

This may be further simplified to:

b=
√
K (K + 2S)

S
=

L
S
. (9-R)

Therefore, an equivalent representation for the germ of
some pathology discussed earlier is:

bS= L. (10)

While this identity applies regardless of the value of S, there
is a limit of interest:

lim
S→0

bSX =KX . (11)

(A side note: As scattering vanishes, the argument to
the transcendental functions in many of the formulas in
Kubelka–Munk theory approaches the product KX . The
absorption coefficient, K , plays a similar role here to the
extinction coefficient, ε, in the Bouguer–Lambert–Beer
[21–23] cannon, where it multiplies the concentration and
path length to form the argument to the exponential
function.)

Another useful representation of b is:

b=
1
2

(
1
R∞
−R∞

)
(12)

whence: 1
R∞
−R∞ = 2b. (13)

3.1.1 Preferred Forms for R∞ and Related Quantities
To avoid cancellation of precision caused by subtraction, the
following formulas are recommended:

R∞ =
S

L+M
=

S
P

(14)

1−R∞ =
K + L
L+M

=
K + L
P

(15)

where P = L+M =K + S+ L.

Gurevič’s formula for transmittance contains the factor
1−R2

∞. Thismay be factored into (1+R∞)(1−R∞), which
may be written:

1−R2
∞ =

(P + S)(K + L)
P2 . (16)

4. REVISED FORMULAS
It should be noted that the following formulas are mathe-
matically equivalent to the corresponding formula appearing
above, and produce identical results under non-pathological
conditions, as will be shown in the following section. The
equation numbers in the following revised formulas are
based on the number of the corresponding equation from
earlier, with a ‘‘-R’’ (and possibly an additional letter where
two or more alternatives are offered).

4.1 Alternate Formulas for R
4.1.1 Exponential Form
Making substitutions using identities derived in the previous
section, Kubelka and Munk’s 1931 formula for reflectance
may be cast as:

R=
P
(
PRg − S

)
+ S(P − SRg ) exp(2LX)

S
(
PRg − S

)
+ P(P − SRg ) exp(2LX)

.

Note that the following term is repeated (for convenience,
associated here with the symbol α):

α = (P − SRg ) exp (2LX).

The revised formula may now be written:

R=
P
(
PRg − S

)
+ Sα

S
(
PRg − S

)
+ Pα

. (1-R)

Discussion. This last form appears to reduce the occasion of
the pitfalls identified, namely, loss of floating-point precision
and/or floating-point failure as X→ 0, R∞→ 0, and either
S→ 0 orK→ 0. This formhas just two distinct subtractions,
vis-á-vis the four required in Eq (1), and, in contrast to the
hyperbolic form, no issues as X→ 0.

Also, note that for perfect transparency, with K > S= 0,
R∞ = 0, L = K , and P = 2K , so the numerator will equal
4K 2Rg , while the denominator will be 4K 2 exp (2KX),
yieldingR= Rg exp (−2KX), which is in direct concordance
with the Bouguer–Lambert–Beer model.

Aside from the two subtractions, one pathology remains,
for K = 0. Then, L = 0, P = S, α = S(1 − Rg ), and the
denominator becomes zero.

4.1.2 Hyperbolic Forms
Two alternatives that avoid the issues with the hyperbolic
cotangent, but nevertheless employ hyperbolic functions,
are:

R=
L ·Rg +

(
S−M ·Rg

)
tanh LX

L+
(
M − S ·Rg

)
tanh LX

, (2-R)
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Table I. Details of testing platform.

Manufacturer Lenovo
Model 20KH002FUS
Processor Intel Core i7-8650U, 4.20 GHz
Topology 1 Processor, 4 Cores, 8 Threads
Memory 15.4 GB
Operating System x86_64 GNU/Linux, kernel 5.8.0
Compiler GNU g++, version 9.3.0
Customary precision g++ C++ double (IEEE 754 float64)
High precision GNU MPFR, version 4.0.2, 500 decimal digits

Table II. Comparison of formulas, high precision.

Quantity Maximum difference

R 1.207× 10−499

T 1.6582× 10−499

R0 9.3836× 10−500

Maximum formula-to-formula difference for 50000 random combinations of K , S ,
X , and Rg , computed in a floating-point environment providing at least 500 decimal
digits of precision.

and

R=
L ·Rg cosh LX +

(
S−M ·Rg

)
sinh LX

L · cosh LX +
(
M − S ·Rg

)
sinh LX

. (2-Ra)

These are both less susceptible to numerical pathology as
X→ 0, and contain one fewer subtraction than the original
hyperbolic form in Eq. (2), in addition to the implicit
subtraction eliminated by no longer using the quantity b.

4.2 Formulas for T
4.2.1 Revision of Gurevič’s Formula for Transmittance
A subtraction is eliminated by using the preferred form of
1−R∞, factoring 1−R2

∞, and:

T =
(P + S)(K + L) exp (−LX)

P2− S2 exp (−2LX)
. (3-R)

When the input is K , S, and X , only one subtraction is used,
and appears to be stable except when K = 0, resulting in a
0/0 indeterminate form.

4.2.2 Hyperbolic Form
Making the substitution L = bS in Eq. (5), and multiplying
numerator and denominator by S, one obtains:

T =
L

M sinh LX + L cosh LX
. (5-R)

Other than the division by two and subtraction implicit
in both hyperbolic functions, only one division, and no
subtractions are employed by this form. The denominator
will vanish only as both K and S do so.

4.3 Formulas for R0
4.3.1 Revised Exponential Form

R0 =
SP
[
exp (2LX)− 1

]
P2 exp (2LX)− S2 . (6-R)

4.3.2 Revised Hyperbolic Forms

R0 =
S tanh LX

L+M tanh LX
, (7-R)

R0 =
S sinh LX

M sinh LX + L cosh LX
. (7a-R)

5. EXPERIMENTAL
Computational experiments were performed to assess agree-
ment among the formulas, evaluate precision under cus-
tomary floating-point conditions, and check behavior under
extreme cases.

5.1 Part 1: Verification
In order to verify that the revised formulas produce the same
results as the prior forms under most conditions (i.e., other
than K = 0 or X = 0), the original and revised formulas
were coded in the C++ programming language. In order to
rule out all but the smallest rounding errors as cause for
any discrepancy, special arithmetic was employed. The GNU
MPFR package [24] was used, providing over 1600 binary
digits (at least 500 decimal digits) of precision. The Boost
Multiprecision wrapper [25] provided a convenient interface
for the MPFR capabilities.

Details of the testing platform are given in Table I.
Fifty thousand random combinations of K , S, X ,

and Rg were generated using the default random number
generator in the GNU g++ environment on a GNU/Linux
workstation. The random number generator was initialized
with a constant seed to ensure consistent results from one
run to the next. The distributions of all four variables were
uniform, with K , S, and X uniformly distributed on [0, 2.5],
while Rg was drawn from a uniform distribution on [0, 1].
The values generated by each combination of the two existing
and three new reflectance formulas, two existing and twonew
transmittance formulas, and three existing and three new
formulas were compared on a pairwise basis.

For reflectance, the formulas compared were those in
Eqs. (1), (2), (1-R), (2-R), and (2-Ra). The transmittance
formulas compared were those in Eqs. (3), (5), (7-R), and
(5-R). Finally, the formulas for R0 compared were given in
Eqs. (6), (7), (7a), (6-R), (7-R), and (7a-R).

The maximum absolute difference for each pair are
shown in Table II. For example, the reflectances calculated
using the five formulas identified in the previous paragraph
differed from each other by no more than 1.207× 10−499

when calculated in a floating-point environment with 500
decimal digits of precision. With maximum differences on
the order of the floating-point epsilon, there is assurance
that the old and new formulas produce, in essence, identical
results under non-pathogenic conditions.
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Table III. High- versus customary precision results.

Equation numbers containing ‘‘-R’’ are revisions introduced in this paper, and appear with a gray background below their prior-art counterparts.
Values are largest absolute value difference between quantities computed in a 500-decimal digit environment and a customary 17-decimal double-precision environment for 50000
random combinations of input. These results illustrate that, for the inputs used, the formulas all provide precision that is acceptable in most practical situations.

5.2 Part 2: Evaluation of Floating-point Results
The same models were exercised, using the same combi-
nations of K , S, X , and Rg , but with the computations
performed in double precision (53 bits of binary precision)
as well. This environment represents practical computation
conditions. Rather than the disagreement between the
formulas, the maximum absolute value by which the cus-
tomary precision calculations differ from the high-precision
counterparts were computed. In earlier experiment it was
shown that the formulas for each mode agree, so, for each
set of input values (K , S, X , and, for reflectance, Rg ) the
high-precision answers were averaged and regarded as the
true value for that input set. The absolute value of the
difference between this ‘‘truth’’ and an answer computed
using the customary precision level was taken as an error.
Table III shows the maximum errors in each of the 50000
trials.

These results show agreement more than adequate
for practical calculations, and are consistent with small
floating-point errors.

5.3 Part 3: Evaluation under Pathogenic Conditions
An additional run was made with K = 0, another with S= 0,
and a third with X = 0. A fourth was made for reflectance
with Rg = 0. The correct results were computed for each
case using equations intended to handle that specific case.
For zero thickness, it stands to reason that R must equal
Rg (a background with no colorant on it is the same as the
background itself),T must equal unity (a vacuumhas perfect
transmittance), and R0 must equal zero (refer to earlier
discussion for reflectance). Kubelka and Munk provided
exact formulas for R and R0 when K = 0, and Kubelka’s
formula (40), while offered as an approximation as K → 0,
is exact for K = 0. Likewise, Kubelka and Munk derived the
exact expression for reflectance factor when S = 0. Finally,
transmittance factor when S= 0 is easily calculated using the
Bouguer–Lambert–Beer law.

As anticipated, all formulas generated a
‘‘Not-a-Number’’ result with K = 0. The complete set of
results appear in Table IV.

5.4 Discussion
In spite of the author’s predictions, the existing formulas
performed very well, except when K = 0 (for which all
formulas failed), and other pathogenic conditions. The new
formulas produced results that were reasonable for all other
pathogenic conditions, as shown in Table IV, and agreement
between high and customary precision, as shown in Table III
provide assurance that their answers are essentially correct.

The results shown in Table III indicate that the
hyperbolic formulas have an edge over the exponential forms,
particularly for R0.

6. CONCLUSIONS
In general, the new formulas performed as well as their
existing counterparts. The revised exponential forms showed
only slightly worse accuracy, while the hyperbolic forms
showed slightly better accuracy.

Those starting new projects should consider adopting
the new formulas, in particular, those using hyperbolic
functions, as well as improved formulas for bS, R∞,
and other adjunct quantities. Even those who wish to
continue to use the existing formulas can profit from new
formulas for adjunct quantities, with fewer subtractions and
denominators less likely to vanish. However, with the new
formulas producing fewer ‘‘Not-a-Number’’ results under
the pathogenic conditions, it may be worthwhile to at least
consider including them in existing projects.

The quantity K + S, called M in this paper, plays a
similar role to a in hyperbolic solutions. Likewise, L is an
analog to b. This is not surprising, because a=M ÷ S, and
b= L÷ S.

The Bouguer–Lambert–Beer model may be more easily
understood as a special case of Kubelka–Munk, because
forms introduced here more easily handle vanishing scatter
and segue gracefully to formulas based on Bouguer–
Lambert–Beer.

6.1 Recommendations for Future Work
As with the existing formulas, the new formulas did not
remove the ‘‘Not-a-Number’’ result forK = 0. Exact formulas
for R, T , and R0 with K = 0 are already in the literature.
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Table IV. Results using pathological input.

Equation numbers containing ‘‘-R’’ are revisions introduced in this paper. Results for
the new formulas have a light gray background.
‘‘nan’’ is ‘‘Not-a-Number’’ resulting from division by zero or similar error.
‘‘KM ()’’ refers to formulas in Kubelka and Munk’s 1931 paper.
‘‘K ()’’ refers to formulas in Kubelka’s 1948 paper. Where applied here, the formulas
refered to are exact under Kubelka–Munk theory.
Note 1: If the layer has zero thickness, the reflectance must be that of the backing,
and its transmittance must be unity.
Note 2: Bouguer–Lambert–Beer law, T = exp(−KX ), was used.

While this paper was otherwise successful in its goal of
eliminating the need to test for and separately handle edge
cases, the absorption-free case stands alone. A consistent way
to handle vanishing values of K is desirable.
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