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Abstract 
Managing color on a particular imaging system is a well-

understood challenge with a wealth of existing models, methods 
and techniques. In the case of printing systems, these tend to 
operate in the context of a single substrate, where managing 
color on every additional substrate is approach as a separate, 
detached problem. While such a mind-set works reasonably well 
in general, it breaks down when it comes to printing onto pre-
colored textiles, such as pre-dyed fabrics. The present paper 
therefore introduces a family of approaches that support the use 
of multiple pre-colored textiles on a given printing system that 
also allow for a balance between characterization effort and 
color match accuracy. This, in turn provides solutions that can 
fit a variety of practical working patterns to maximize overall 
efficiency and performance. 

Introduction 
The rise of digital printing in a variety of textile industries 

is driven by its greater flexibility, both in terms of the content 
printed and in how precisely run lengths can be tailored to 
demand. While some applications of printing onto textiles, such 
as soft signage, can apply solutions developed for the Graphic 
Arts, others, like sportswear and fashion, face new color 
challenges. 

In the case of dye-sublimation printing, there are two 
prominent ones: first, the need to determine how to use a printing 
system’s inks to match a given color on a wide variety of pre-
colored fabrics and second, the need to deliver color matching 
on a fabric also in workflows where printing is done onto a 
transfer paper, from where it is calendered onto the final fabric. 

Both challenges turn out to be color characterization and 
modelling ones. Here, the literature on characterizing the color 
of print on fabrics presents a variety of approaches, with different 
levels of color accuracy. Early solutions were attempted via 
linear models1,2, followed by a direct application of ICC color 
management3 (with 95th percentiles of ∆E2000 errors above 6) 
and the use of neural networks4 (yielding prediction errors with 
a mean of 1.89 ∆E00, 90th percentile of 2.8 ∆E00 and a maximum 
of 8.5 ∆E00), already well established for recipe formulation 
when dyeing fabrics5. Also, relevant here is the rich and 
extensive literature on print color prediction on non-textile 
materials6,7, where Neugebauer-based approaches8, the Kubelka–
Munk equations9, the use of polynomials, and that of neural 
networks are all common, as are combinations of such basic 
predictive components10. 

However, the above approaches are both less and more 
constrained than the challenge addressed in this paper. They are 
less constrained since they apply to cases where the printing 
substrate is spectrally nearly non-selective, which results in a 
certain degree of regularity among the colors of the resulting 
colorant-substrate combinations. It also means that the color of 
the substrate interacts in a very similar way with all colorant 
colors, and this, in turn, aids their successful prediction. They are 
more constrained, since they approach the modeling of a given 
substrate-colorants system from scratch, while in the case of 

printing onto colored fabrics, the colorant set is constant, and it 
is only the fabric substrate color that varies. 

A final consideration to introduce, before setting out an 
approach tailored to making color predictions when printing onto 
textile substrates of varying color, is the question of what the 
purpose of such predictions is. The most obvious scenario is the 
need for a match that complies with color tolerances suitable for 
a given textile printing application. E.g., in sportswear and 
fashion this can be in the region of 1.0–1.5 ∆ECMC under a 
variety of light sources, while in soft signage the requirements 
tend to be around 0.8-1.4 for the 95th percentile of ∆E00s for solid 
colors and 2.5 for image content. Instead of this being an all or 
nothing scenario though, where a solution either delivers these 
tight levels of match or it is not applicable, there is value also in 
using color modeling as a pre-selection mechanism in a manual-
visual process, where model characterization overheads can be 
balanced against accuracy. For an experienced printer operator, 
who would spend around one hour per color to match it 
iteratively by hand from, having a quick, approximate match that 
would remove some of the early iterations is more useful than a 
lengthy and resource-intensive process that delivers a match 
directly. A key factor here is that many print jobs in color textile 
printing for fashion and sportswear applications involve a 
relatively small number of individual colors, which then need to 
be matched on a larger number of pre-colored substrates. A high 
per-substrate overhead is undesirable here. 

To address the specific constraints and opportunities that 
the prediction of printed color on pre-colored textiles presents, 
the following sections will present a series of approaches with 
increasing printing and measurement needs, preceded by a 
presentation of differences between differently colored 
substrates, which set the context in which predictions will be 
made. 

Printed color on pre-colored substrates 
To explore color modeling on pre-colored substrates, a 

white and eight strongly colored substrates will be used here. 
Table 1 shows their colorimetries, Figure 1 the a*b* projections 
and Figure 2 the color gamuts of the measurements of an 864-
patch color chart printed on each of these substrates with the 
same printing system using CMYK colorants. 

Table 1: Substrate names and colorimetries 
Name CIELAB 
White 93.42, 2.32, -8.90 
Cyan 67.59, -23.13, -25.78 
Magenta 52.22, 54.62, -10.94 
Yellow 84.59, 6.80, 79.73 
Brown 39.19, 16.56, 15.51 
Orange 76.37, 27.96, 71.96 
Red 46.09, 58.03, 32.49 
Green 70.85, -35.32, 39.49 
Blue 35.24, 1.72, -30.15 
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Figure 1. a*b* projections of 864 color patches printed on nine substrates. 

 

 
Figure 2. Color gamuts of 864 color patches printed on nine substrates. 

As can be seen, the consequences of printing the same 
content onto these nine substrates are dramatic, with gamut 
volumes ranging from as little as 698 cubic CIELAB units on 
brown to 193K on white. 

To get a sense of the challenge of dealing with color when 
printing on such distinctly colored substrates, the accuracy of 
ICC output profiles built on the basis of these 864 measurements 
is also telling. For the white substrate the profile’s median error 
is 1.1 ∆E00, the 95th percentile is 1.7 ∆E00 and the maximum is 
at 2.8 ∆E00. Instead, the worst case in the set is for the yellow, 
orange and red substrate, where the profiles for yellow has a 
median error of 5.5 ∆E00, a 95th percentile of 15.4 ∆E00 and a 
maximum of 20.6 ∆E00. In other words, the profile would give 
excellent results for a soft signage application on the white 
substrate, but would be totally unacceptable on a yellow one and 
in both cases it would take a significant amount of time to print, 
calender and measure the color charts needed for building them. 

Level 0: substrate only 
The most basic attempt that could be made to predict the 

colors printed on a pre-colored substrate would be to attempt to 
do so based solely on a full set of measurement from a canonical 
substrate (e.g., the white one) and a single measurement of the 
blank substrate on which predictions of printed color need to be 
made. 

Let us take the blue substrate as an example, where building 
an ICC profile directly have average results (median: 3.3 ∆E00, 
95th percentile: 9.3 ∆E00, maximum 10.4 ∆E00) and which has 
a gamut volume of 2247 cubic CIELAB units. The color 
differences between corresponding color patches printed on 
white versus blue substrates (i.e, having the same per-ink 
quantities and printed patterns) have a median of 34.5 ∆E00, a 
95th percentile of 51.9 ∆E00 and a maximum of 57.5 ∆E00 
(Figure 3). In other words, the color on a white substrate gives 
little indication of what the same content printed on the blue 
substrate will look like and a printer operator’s attempt at 
matching some color in the gamut available on the blue substrate 
effectively starts from scratch. 

 
Figure 3. Reflectances of 864 printed patches on canonical, white 
substrate (left) and on pre-colored, blue substrate (right). 

A simple approach here consists of taking the 
measurements of the color patches on the white substrate and 
making a prediction of what their colors would be on the blue 
substrate using the Kubelka–Munk equations. More specifically, 
the Kubelka–Munk model is only needed for separating the ink 
layer as a whole (without having to care about its components) 
and the substrate. Treating the ink layer as one and assuming that 
it is perfectly transparent means that it is not necessary to deal 
with the per-ink or combined degrees of opacity, which 
simplifies the general Kubelka–Munk model from: 
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X=R+(ST2)/(1-SR) (1) 

(where X is total reflectance, S is substrate reflectance, T is 
ink layer transmissivity and R ink layer reflectivity) to 

X=ST2 (2) 

making the prediction of what a transparent ink layer on one 
substrate would be like when applied to another a simple division 
by the known substrate and multiplication by an unknown one:  

XN = (SCTC2/SC)*SN (3) 

(where N denotes the new substrate and C the canonical 
one), which is the same as  

XN = (XC/SC)*SN (4) 

This highly-simplified model assumes that ink-substrate 
interactions are the same on the new and the canonical substrate, 
which is rarely the case. Nonetheless, the improvement versus 
the direct difference between the two substrates very large, with 
the simple single-measurement Kubelka-Munk approach having 
median: 9.9 ∆E00, 95th percentile: 13.6 ∆E00, maximum 20.1 
∆E00 prediction errors on the blue substrate.  

While the above results still show high errors, the median 
has been reduced from 34 to 10 and the 95th percentile from 50 
to 13. This means that a neighborhood can be predicted that is 
sufficient to generate a number of alternatives from which a 
printer operator can make choices. This in turn can reduce the 
number of iterations needed in the absence of a model. 

Level 1: substrate only + priors 
Without going beyond the need to measure the pre-colored 

substrate on which color prediction is to be done, it is possible to 
improve prediction performance if more data about pre-colored 
substrates is available a priori. Printing and measuring a set of 
pre-colored substrates beforehand allows to build a prediction 
that is not tied to any one of them but uses the data available from 
all of them. 

The intuition here is that while the substrate 
subtraction/addition (division/multiplication) in the Level 0 
example follows first principles, it assumes simplistic or constant 
colorant-substrate interactions, which can be improved by a 
generic mapping. Spectral regression can be derived from a 
number of corresponding sets of measurements between 
canonical and pre–colored substrates to build a substrate-
independent mapping, i.e., a single mapping, independent of 
substrate color. 

Let Mi be a set of reflectance measurements of the same 
content (e.g., the 864-patch chart used here) on a variety of 
substrates, where XC corresponds to the canonical substrate and 
Xi to coloured substrates, with the substrate itself having been 
divided out as in Level 0. A mapping T is then solved for such 
that it minimizes 

||f([X1, X2, … Xn])*T - [XC, XC, …, XC] || (5) 

where f is some transformation of the reflectance data in Xi 
(e.g., a polynomial expansion). T then is common to all colored 
substrates and can be applied to improve on the Level 0 approach 
as follows. First, the substrate is removed from the canonical 
substrate reflectances XC: 

 

X'C = XC/SC (6) 

Second, media-common mapping T is applied to get 
substrate-independent X''C: 

X''C = X'C*T (7) 

Third, the new substrate is added back to get predicted 
reflectances Xi: 

Xi = X''C*Si (8) 

The T correction obtained from pre-colored substrate priors 
results in prediction errors with median: 6.5 ∆E00, 95th 
percentile: 13.4 ∆E00, maximum 17.0 ∆E00 on the blue 
substrate, which translates into identifying a tighter 
neighborhood from which manual iteration can start. 

Level 2: printed primaries 
The next level of complexity that can be introduced is to 

require some minimal printing on the pre-colored substrate on 
which color predictions need to be made. The least amount of 
printing that can be used is of only the printing primaries 
themselves. E.g., in our case of a set of CMYK inks. Based on 
the four spectral reflectance measurements of the inks, plus the 
spectral reflectance of the blank substrate (which can quickly be 
measured by hand), coupled with the corresponding five 
reflectances from the canonical setup, a per-wavelength 
reflectance-to-reflectance mapping can be computed using least 
squares minimization. Even such minimal printed and measured 
data from a pre-colored substrate results in significant 
improvements, leading to prediction errors of median: 3.4 ∆E00, 
95th percentile: 6.4 ∆E00, maximum 13.0 ∆E00 on the blue 
substrate, effectively halving most error statistics from the Level 
1 approach.  This means that for many colors a printer operator 
may only need a single, or two iterations before identifying a 
match. 

Level 3: printed primaries + secondaries 
Supplementing the Level 2 data with measurements of the 

CMY primaries – i.e., RGB – and therefore using 8 instead of 5 
measurements leads to prediction errors of median: 1.5 ∆E00, 
95th percentile: 3.9 ∆E00, maximum 7.6 ∆E00 on the blue 
substrate. This is a good balance between printing and 
measurement effort and iterations needed and provides a 
practical solution for an experienced printer operator. 

Level 4: full characterization 
Finally, a prediction of color on the pre-colored textile can 

also be made on the basis of a full set of measurements. A 
mapping, F can be computed here by minimizing the following 
L2 norm:  

||XP*F - CP|| (9) 

where XP and CP are polynomial expansions of reflectances 
from the pre-colored and canonical substrates respectively such 
that w is a single row of XP or CP for an n-wavelength case (e.g., 
400-700 nm at 10 nm intervals would give an n of 31): 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[s w(1), w(2), …, w(n), w(1)*w(2), w(1)*w(3), … ,  
w(n-1)*w(n), w(1)2, w(2)2, …, w(n)2]  (10) 

where s is a scalar/offset term (e.g., with a value of 1) wi*wj 
are the cross-terms and wi2 the second order terms. A trivial 
solution to such minimization is: 

F = (XPT*XP)-1*XPT*CP (11) 

 (where (AT*A)-1 is the Moore-Penrose inverse or pseudo-
inverse), but more robust solutions are available, e.g., in 
MATLAB or numpy that use different approaches via matrix 
decompositions such as SVD. 

Applying this model to the data from the canonical, white 
substrate and the blue substrate results in prediction errors of 
median: 0.3 ∆E00, 95th percentile: 0.7 ∆E00, maximum 1.9 
∆E00, which substantially outperform a direct use of ICC 
profiles and deliver prediction accuracy that meets the most 
demanding use cases. This is particularly relevant when larger 
numbers of colors need to be matched or when matching needs 
to be done by printer operators not experienced in establishing 
color matches iteratively. 

Table 2: ∆E00 color differences between prints on white and 
blue substrates (P – printing required on blue substrate, M – 
number of measurements on pre-colored textile needed for 
prediction). 
Scenario P M Med. 95thp. Max. 
Direct No 0 34.5 51.9 57.5 
ICC profile Yes 864 3.3 9.3 10.4 
L0: substrate No 1 9.9 13.6 20.1 
L1: sub + prior No 1 6.5 13.4 17.0 
L2: primaries Yes 5 3.4 6.4 13.0 
L3: L2 + sec. Yes 8 1.5 3.9 7.6 
L4: full char. Yes 864 0.3 0.7 1.9 

 
Table 2 summarizes the various levels of color prediction 

performance, from where it can be seen that a variety of levels 
of performance and needs for measurement and printing are 
available so that solutions can be tuned to specific workflows and 
applications. 

Calendering 
An additional element involved in predicting color printed 

on textiles applies when the process involves two stages, as in 
dye-sublimation printing. There a print is made onto a transfer 
paper, which is then placed in contact with the textile and passed 
through a calendering machine where, under pressure and heat, 
the ink is sublimated from the transfer paper and onto the textile. 
In this case, color measurements can be made of the print on 
paper and of the final print on the textile and it is beneficial to be 
able to predict the final color on a textile from the intermediate 
color on the transfer paper. 

Here Figure 4 shows reflectances on Coldenhove HS 95 
gsm paper and then after calendering on an Argentona Anibal 
polyester blend fabric, printed with a HP Stitch S300 printer that 
uses CMYK dye-sublimation inks. The color differences 
between corresponding color patches were median: 18.2 ∆E00, 
95th percentile: 26.0 ∆E00, maximum 30.4 ∆E00. 

 
Figure 4. Reflectances on transfer paper(left) and fabric (right). 

Applying the same full characterization approach as used 
on the pre-colored substrate case resulted in prediction errors 
with median: 1.5 ∆E00, 95th percentile: 4.5 ∆E00, maximum 7.7 
∆E00. This is a significant improvement as compared with the 
direct differences but is not at a level required by most 
applications. 

To improve prediction accuracy, the initial model was 
extended by taking its predictions as the input to a second 
minimization using the same polynomial expansion. I.e., first 
minimizing a mapping between reflectances on paper and on 
textile, followed by minimizing another mapping between the 
first mapping’s predictions and the textile reflectances. The 
result is a progressive model that resembles the layers of a neural 
network, although its parameters are computed in a sequential, 
forward manner. Applying such a progressive approach resulted 
in prediction errors with median: 0.6 ∆E00, 95th percentile: 1.8 
∆E00, maximum 3.4 ∆E00. 

Conclusions 
Predicting the color of printing on textile materials 

introduces new challenges due to the use of pre-colored 
substrates and the use of intermediate stages. Approaching the 
need for color control here benefits from taking into account both 
what varies and what remains the same between different use 
cases and the needs and constraints of those who are tasked with 
achieving color matches. 

A sequence of increasingly more resource-intensive ways 
of predicting printed color on pre-colored substrates was 
presented, which offers a continuum of performance versus 
effort combinations that range from requiring no printing, via the 
use of very low numbers of printed and measured color patches 
to the use of full characterization charts. They then deliver 
solutions that range from accelerating a manual matching 
process to directly providing a match. 

Underpinning these approaches are the use of both 
analytical models (Kubelka-Munk) and general-purpose 
computational methods (regression) as well as their 
combinations. 
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