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Abstract 

It is well known that color formation acts as a noise-reducing 
lossy compression mechanism that results in ambiguity, known as 
metamerism. Surfaces that match under one set of conditions – an 
illuminant and observer or capture device – can mismatch under 
others. The phenomenon has been studied extensively in the past, 
leading to important results like metamer mismatch volumes, color 
correction, reflectance estimation and the computation of metamer 
sets – sets of all possible reflectances that could result in a given 
sensor response. However, most of these approaches have three 
limitations: first, they simplify the problem and make assumptions 
about what reflectances can look like (i.e., being smooth, natural, 
residing in a subspace based on some measured data), second, they 
deal with strict mathematical metamerism and overlook noise or 
precision, and third, only isolated responses are considered without 
taking the context of a response into account. In this paper we 
address these limitations by outlining an approach that allows for 
the robust computation of approximate unconstrained metamer sets 
and exact unconstrained paramer sets. The notion of spatial or 
relational paramer sets that take neighboring responses into 
account, and applications to illuminant estimation and color 
constancy are also briefly discussed. 

Introduction 
While the dimensionality of human color vision is discrete and 

three-dimensional, that of the stimuli it responds to can either be 
thought of as continuous or as sampled in a much higher-
dimensional way. It is common to represent spectral power 
distributions or spectral reflectances at intervals of 10 nm in the 
range of at least 400–700 nm, which yields a 31–dimensional vector.  

A direct consequence of such higher dimensionality is a many 
to one relationship. Under given conditions, there is a variety of 
spectra that differ among themselves but where all of them give rise 
to a single response. Such a set of all spectra that correspond to a 
single response is called a metamer set and characterizing it 
– instead of identifying a single spectrum – is the most complete 
answer to the question of what stimulus may have given rise to a 
given response. The volume of metamer sets then is an indication of 
the uncertainty of picking any single spectrum as the source of a 
response. And the same also holds when the viewer is not a human 
but an imaging system like a scanner or camera. 

The high-dimensional nature of spectra makes their direct 
computation problematic, since computing boundaries in 31 or even 
16 dimensional spaces (for a 20 nm sampling of 400-700 nm) is 
impractical. A further, and more fundamental, challenge is that 
metamer sets are dimensionally deficient – i.e., a set of metamers in 
31D will have a dimensionality lower than 31, which yields zero 
volume.  

Instead, the exact computation of metamer sets is constrained 
to a projection onto another domain – e.g., an orthogonal 
complement of XYZ under a given illuminant (e.g., D50 or D65), or 
simply multiple illuminant-observer combinations. A consequence 
of the difficulty of dealing with metamer sets directly in spectral 

terms is also the practice of computing metamer set volumes in 
colorimetric terms. The result is the concept of a metamer mismatch 
volume, where the degree of a surface’s potential for metamerism is 
quantified by computing the volume in a colorimetric space (e.g., 
CIEXYZ) under a second illuminant that contains the colorimetries 
of reflectances that under a first illuminant are metamers. The 
greater the volume under the second illuminant the greater the 
potential for metamerism that surfaces have, which match under a 
first illuminant (Logvinenko et al., 2014). 

To counter the challenge of operating in a high-dimensional 
spectral space, and taking advantage of the lower-dimensional 
variance in natural spectra, dimensionality reduction techniques like 
Principal Component Analysis (PCA), Independent Component 
Analysis (ICA) and Neural Networks (NN) (e.g., Ramanath et al., 
2004) have been used. Even when natural spectra are represented in 
a decorrelated basis, obtained, e.g., using PCS, the need for around 
8 bases for representing their variance is not uncommon (e.g., 
Krinov, 1947; Vrhel et al., 1994). While such an approach is 
beneficial when studying the spectra of natural surfaces, it poses 
problems when applied to some scenarios, such as spectral power 
distributions under LED lighting (for which, e.g., Finlayson et al. 
(2014) provide an elegant solution by using the LED spectra as basis 
functions and convex combinations for modelling the LED output’s 
peak wavelength shift with intensity).  

Dimensionality reduction also significantly underpredicts 
metamer mismatch volumes, as was shown recently by Mackiewicz 
et al. (2019), who presented a solution to metamer set computation 
that avoids such reduction. It works by leveraging an approach to 
efficiently computing the spectra delimiting the Object Color Solid 
(OCS) (Schödinger, 1920), i.e., the convex hull of all possible 
responses for a given illuminant-observer combination. This is done 
using a spherical sampling that yields spectra on the OCS boundary 
in a sampling of all spherical directions. The same method is then 
used for a given response, where reflectances are maximized in 
spherical spectral directions. 

An approach that side-steps the dimensional ill-posedness of 
exact metamer set computation is the move from metamer sets (i.e., 
a strict correspondence between multiple spectra and a single 
response) to paramer sets, which are sets of spectra whose responses 
are within some, usually narrow, neighborhood in a space 
representing responses (e.g., CIE XYZ or camera RGB values). An 
early motivation for the introduction of tolerances instead of an 
exact match was to mimic the human visual system’s response 
where physical changes below a certain threshold – the just 
noticeable difference (JND) – do not result in a change in its sensory 
response (e.g., Samadzadegan and Urban, 2015). Such response 
relaxation also allows for variation to be introduced on the spectral 
side that results in well-posed, fully-dimensional spectra. 

There is another motivation for using paramer sets, beyond 
taking into account JNDs, which is the presence of noise in all 
measured/captured data. Whether it be image capture using cameras 
or scanners or the measurement of reflectance or colorimetry, noise 
is always present. This begs the question of what the meaning of a 
metamer set is beyond the purely theoretical. In practice it is never 
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a response for which a corresponding set of possible spectra is 
sought, but a distribution of responses due to capture or 
measurement noise whose paramer set needs to be characterized. 
Working with paramer sets where the response range is the result of 
noise leads to more reliable predictions of response-spectrum 
correspondence. This, in turn, can improve the accuracy and 
robustness of estimating captured light properties. 

In this paper we present an exploration of various aspects of 
moving from operating on metamer sets, which is unnecessarily 
hard and does not correspond to real situations, to paramer sets, 
where as much information as is available is used (e.g., multiple 
measurements/captures, spatial context, …) to make estimates and 
predictions that fit practical applications more closely. An example 
of using paramer sets in conjunction with spatial information is 
Samadzadegan and Urban’s 2015 paramer-mismatch-based spectral 
gamut mapping (PMSGM) where paramer sets projected into 
colorimetry under multiple illuminants and for spatial 
neighborhoods are intersected to obtain printed colors that optimize 
color matching for those illuminants and do so in a spatially 
consistent way. 

Unconstrained Metamer and Paramer Sets 
Computing surface metamer sets means computing the set of 

all possible reflectances that, given an illuminant and an observer or 
camera sensor, match a given response. This means inverting the 
color formation equations. Let us assume the Mondrian world of 
flat, Lambertian surfaces where color formation follows the well-
known equation: 

𝒙 = 	𝒓 ∗ (𝒍 • 𝑺!) (1) 

where r is the reflectance vector, l the illuminant (light source) 
vector and S the sensor sensitivities, with • denoting the vector dot-
product, and x the sensor response. 

Both r and l are 1xn vectors (where n is the spectral sampling, 
e.g., 31 or 16) and S is an mxn matrix where m is the number of 
sensors resulting in x being a 1xm vector of sensor responses (e.g., 
3 for an RGB camera where x = RGB or the CIE color-matching 
functions where x = XYZ). The dot-product (𝒍 • 𝑺!) is also known 
as the mxn “lighting matrix” and often denoted as A (Maloney and 
Wandell, 1986). 

As is well known, the mismatch between m and n implies that 
Eq. (1) is under-determined in terms of reflectance r, meaning that 
if all else is constant (x, l, S), there is no unique solution r to the 
equation and, in fact, the solution is in an n-m dimensional subspace, 
and therefore has n-m degrees of freedom. The solution space can 
be shown to be a convex subset and to have infinitely many solutions 
(Morovič, 2002). As a corollary, as m approaches n, the degrees of 
freedom diminish as does the under-determined nature of Eq. (1). 
The more sensors one has available in S, the lower the degree of 
metamerism. In the limit, when m = n and spectral sampling 
matches the number of sensors (assuming they are decorrelated), 
there is a unique solution for r. 

Substantial advances have been made in the literature to narrow 
down the solution space of r, inspired by an important intuition 
about reflectances: that they are not arbitrary vectors and typically 
exhibit specific properties. It is then possible to dimensionally 
reduce the reflectance space using principal component analysis 
(PCA) or characteristic vector analysis (CVA). If we assume that all 
reflectances can be written as linear sums of some pre-defined set of 
p basis functions B: 

𝒓 = 	𝒘 ∗ 𝑩 (2) 

then Eq. (1) becomes: 

𝒙 = 	𝒘 ∗ 𝑩 ∗ (𝒍 • 𝑺!) (3) 

where B is a linear model basis (Maloney, 1986) that defines a 
lower-dimensional, decorrelated coordinate system that represents 
reflectance space. Inverting Eq. (3) then becomes solving for w 
where w is a 1xp vector with p ≪ n. Both the strengths and pitfalls 
of such linear model bases come from being tailored to a particular 
data set. This can be advantageous and enable tuning a solution to a 
particular ecosystem, but it also means a threat to generality.  

 

 
Figure 1: Illustration of degenerate metamer set – where the line has no 
volume (top) vs full-dimensional paramer set – where the intersection has 
volume (bottom). 

Turning back to Eq. (1), constraints on reflectances that hold 
for all physically possible surface reflectances can still be 
formulated. Excluding materials such as fluorescents, quantum dots 
and other photoluminescent effects that allow for down-shifting 
incident energy (i.e., emitting energy at a wavelength different from 
than at which it was absorbed), all reflectances have to follow: 
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𝟎	 ≤ 𝒓	 ≤ 𝒖 (4) 

Typically, the inequalities of Eq. (4) would be written as 𝒓	 ≤
𝟏 but there is no need to fix the upper bound u to 1, although it will 
often be close to 1 (e.g., optical brighteners of common print 
substrates yield values above 1). Nevertheless, it is useful to 
consider that reflectances are not arbitrary vectors (Morovič, 2002). 

Given the above conditions, inverting Eq. (1), with the added 
constraints of Eq. (4) amounts to intersecting an n-m dimensional 
hyperplane (Eq. (1)) with an n-dimensional hypercube (Eq. (4)). 
While this is a tractable problem, the solution is degenerate and 
often fragile to compute using standard convex hull solutions – i.e., 
while reflectances are in n-dimensional space, the solution to the 
metamer set problem resides in an n-m dimensional subspace and 
therefore has no volume. Fig. 1 (top) illustrates this schematically: 
the solution space of all reflectances (hypercube) is represented by 
a 3D cube and the sub-space defined by color formation (i.e., the 
reflectances that match a given response) is represented by a line in 
3D (a degenerate, not fully-dimensional object), with their 
intersection shown as a line segment. 

Robust Approximate Metamer Set Computation 
One way to overcome such computational fragility is to break 

down the convex hull computation and compute an approximation, 
without assuming that the resulting hull will be fully–dimensional. 
The approach we describe below enables to do this robustly, albeit 
not efficiently, and in a way that results in an under-estimate of the 
true metamer set. 

The basic intuition behind this method is to consider the fact 
that the convex hull can be described in a number of ways: as linear 
inequalities (delimiting the convex region) or as a set (strictly 
speaking the smallest set) of vertices that describe the convex 
region. The definition of the metamer set is given as the intersection 
of the inequalities in Eq. (4) and the strict equality constraint in Eq. 
(3), while the solution(s) r reside in an n-dimensional space forming 
an n-m dimensional convex polytope. If we can compute the 
extreme vertices of this convex object then the full solution would 
lie in a sub-space of n-dimensional space and would therefore be 
degenerate (i.e., would have no volume). An alternative approach is 
to consider this problem in each dimension and all its dimension-
combinations one by one, resulting in a set of points that will be a 
convex region and will under-estimate the true metamer set.  

Since the extremes of the convex region are the smallest and 
the largest values, we can formulate this problem as follows. 

First, we define the set of all combinations from 1 to n as the 
set of vectors i that contain all combinations of 1, 2, 3, …n out of n 
– this would correspond to, e.g., wavelength 1 (e.g., 400 nm), 2 (e.g., 
410 nm), etc., followed by wavelength 1 and 2 (e.g., 400, 410 nm), 
1 and 3, etc., all the way to all wavelengths 1 to n. Let us denote this 
set as C and define it as:  

𝑪: {𝒊, 𝒊 ∈ 7𝒏𝒋8 : 𝒋	 ∈ {𝟏,… , 𝒏}} (5) 

Then, for each combination of 1 to n wavelengths from C, we 
compute the minimization and maximization problem: 

𝒙 = 	𝒓 ∗ (𝒍 • 𝑺!)	𝑠𝑡. 𝟎	 ≤ 𝒓	 ≤ 𝒖 

𝒎𝒊𝒏	𝒓𝒊	∀	𝒊	 ∈ 𝑪   

𝒎𝒂𝒙	𝒓𝒊	∀	𝒊	 ∈ 𝑪  (6) 

In other words, for each dimension and each dimension 
combination we evaluate two optimizations, a minimization and a 
maximization – to obtain the partial extremes of the true convex 
hull. Given that this computation is done per dimension and 
dimensional combination, it results in a large number of 
combinations – e.g., for 16 spectral samples (400 to 700 at 20 nm 
steps) there are 65536 optimizations. Since the constraints are linear 
inequalities and the optimization is a linear objective function, this 
computation can be formulated using Linear Programming (Chvatal, 
1983). Here the indices in C serve to determine the value of the 
objective function (e.g., 1 for minimizing and -1 for maximizing) 
– and takes about 15s per colorimetry on a common desktop 
computer. While this can be practical and useful, since reflectances 
computed in this way are strict metamers, the result is an 
approximation and an under-estimate of the true metamer set that 
still suffers from degenerate dimensionality. 

Unconstrained Paramer Set Computation 
To address this shortcoming of the exact approach, we 

introduce the notion of noise into the equation – departing from the 
strict mathematical definition of metamerism. In the literature this is 
sometimes referred to as paramerism or paramer sets, where instead 
of a strict, exact equality, a near-match is sought. As described 
earlier, not only does considering a near-match make the problem 
more real-world-like, it also has important consequences for the 
solution. 

The simplest way to consider a near-match or to account for 
some kinds of noise is by relaxing Eq. (1) as follows: 

𝒙𝑳 ≥ 	𝒓 ∗ (𝒍 • 𝑺!)	∧ 	𝒙𝑼 ≤ 	𝒓 ∗ (𝒍 • 𝑺!) (7) 

where instead of a single target response x, a lower (xL) and 
upper (xU) bounds are used. Reflectances that are a solution to Eq. 
(7) will then result in responses that reside inside the hypercube 
described by these two extremes. Taking Eq. (7) and combining it 
with Eq. (4) then results in a set of linear inequalities that jointly 
define a convex volume in the reflectance space. Eq. (4) are 2n 
inequalities while Eq. (7) are 6 inequalities, written together in 
canonical form (𝑨𝒙 ≤ 𝒃) as follows: 

𝒓 ≤ 𝒖  

−𝒓 ≤ 𝟎  

(𝒍 • 𝑺) ∗ 𝒓 ≤ 𝒙𝑼  

−(𝒍 • 𝑺) ∗ 𝒓 ≤ −𝒙𝑳 (8) 

For a given xU, xL and l, S, the set of inequalities in Eq. (8) 
therefore describes a halfplane intersection, or convex hull 
computation, that results in a non-degenerate n-dimensional 
subspace and can be computed using common convex hull libraries 
such as qhull (Barber et al., 1996). 

While the mechanism to introduce a range of possible 
responses above is a very simple one – an enclosing hypercube (or 
cube for tristimulus or RGB responses). The principle can be 
generalized to allow for arbitrary convex sub-spaces. E.g., if noise 
is defined as a unit-sphere in CIE L*a*b* – e.g. a sphere where all 
surface points are at most 1 DE76 from all other points on or in the 
sphere – by means of discretizing the sphere in L*a*b* 
(approximating it with a polyhedron), converting the result to XYZ 
and computing the convex hull in the form of linear inequalities that 
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enclose it in XYZ, results in constraint that can directly be used in 
Eq. (8). Instead of the upper and lower bound xU, xL a set of 
inequalities – again in the canonical form  (𝑨𝒙 ≤ 𝒃) that delimit the 
target region, representing an arbitrary geometric representation of 
noise (expressed in XYZ) are then used: 

𝑨 ∗ (𝒍 • 𝑺) ∗ 𝒓 ≤ 𝒃 (9) 

To conclude, what we have presented here are two methods: 
one that is approximate but robust and uses the strict metamerism 
definition (via linear programming) and a second one that relaxes 
the strict definition and computes paramer sets exactly and directly. 
Fig. 1 (top) illustrates the above approach schematically and shows 
that if instead of strict equality, a small range of responses is used in 
the computation of a paramer set, the resulting solution space is not 
degenerate and has volume. 

Results and Examples 
In order to explore the previously defined computations, this 

section shows examples for some sample configurations. Fig. 2 first 
shows a real example of this computation using CIE illuminant D50 
as l and the CIE 1931 color matching functions as the reference 
illuminant and observer as S, with an upper bound for reflectance 
values of u=1 and for an XYZ of [17.1, 22.5, 10.6] – computed 
based on a green sample from a set of 426 Munsell chips – with a 
tolerance of 0.5 in XYZ terms, resulting in xL  = [16.6, 22.0, 10.1] 
and xU  = [17.6, 23.0, 11.1], the set of reflectances that map to this 
cube in XYZ are shown in the figure as the extreme vertices of the 
convex hull computation, mapped to XYZ to confirm that they 
indeed map to the cube defined by the tolerances. 

 
Figure 2: Paramer set reflectances projected onto XYZs under reference 
conditions (XYZ, D50) with 0.5 +/- in each of X, Y, Z. Note the scale of the 
axes that show the above paramer set cube to be of side 1 in each X, Y, Z. 
The labeled mid-point shows the exact XYZ. 

Fig. 3 then also shows the same reflectances that in Fig. 2 are 
projected onto the XYZ D50 space (he reference set-up), as 
reflectances. Here a 16 spectral sample representation was used, 
from 400 to 700 nm at 20 nm steps. As can be seen, the reflectances 
(plotted in green) contain high frequency components (i.e., they 
alternate between extremes liberally and frequently, rather than 
being smoothly varying), however they are also clearly not arbitrary 
and have, e.g., concentrated variability in the 500 to 650 nm range. 
For comparison, an 8D linear model basis solution is also plotted 

(grey dashed lines) as well as a reference (measured) reflectance of 
the Munsell chip (shown in black) and normalized XYZ curves, that 
help understand the intuition of where more variation (e.g., the 500 
to 600nm) and where less (e.g. past 600nm or below 420nm) are to 
be expected. Note here is that the linear model basis – as expected – 
enables similar solutions to those of the reference reflectance (which 
was part of the basis computation), while the unconstrained solution 
also contains these reflectances (by definition) but represents a 
much larger variety of possible reflectance curvesm even 
‘unnatural’ ones. 

This figure highlights the earlier point that using a linear model 
basis in a closed ecosystem where reflectances are known and where 
the expectation is to deal with reflectances of similar kinds can work 
well, however it does not allow for arbitrary reflectances and clearly 
results in significantly reduced spectral variety. Conversely, the 
unconstrained set clearly results in reflectances that are uncommon, 
contain unusual high frequencies and are unlikely to be natural (in a 
loose sense of the word), but is therefore more general and contains 
all possible reflectances (natural or synthetic) that could potentially 
result in the target colorimetry neighborhood. 
 

 
Figure 3: Paramer set, physically possible reflectances (green), constrained, 
linear model 8D basis reflectances (gray dashed), reference reflectance 
(Munsell 178). The XYZ D50 color matching functions are shown for 
reference. 

While Fig. 3 shows the nature of reflectances that the 
unconstrained method results in and intuitively implies a larger 
volume, we can also compute and illustrate this by projecting the 
metamer or paramer sets onto a different set-up, e.g., by changing 
from CIE illuminant D50 to A as is commonly done in metamer 
mismatch volume studies. Fig. 4 shows the convex polytopes in 
XYZ (for illuminant A) for three cases: the 8D linear model basis 
(darkest volume), the unconstrained LP-based approximate solution 
to the exact metamer set (lighter volume) and the direct convex hull 
paramer set solution (with tolerance 0.5 in XYZ as before) – where 
the darkest and lightest volumes correspond to the reflectances 
plotted as grey lines and green lines in Fig. 3 before. 

Next, we apply this analysis to the full MacBeth ColorChecker 
chart. Fig. 5 shows the 24 colorimetries of this chart using a 
tolerance of ±0.5 and CIE D50 and 1931 XYZ reference conditions, 
as before. The target colorimeters are cubes around the target XYZ 
(with an edge of 1) are plotted in an XZ 2D projection of XYZ space. 
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Figure 4: Metamer mismatch volumes: darkest (8D linear model basis), lighter 
(unconstrained LP solution), lightest (exact solution, paramer set with +/- 0.5 
in XYZ). 

 
Figure 5: Target XYZ colorimetries of the 24 Macbeth colorchecker chart data 
set, including tolerance of ±0.5 (cubes in XYZ with side 1). 

 

 
Figure 6: Paramer set reflectances corresponding to XYZ cubes in Figure 4 
that match the 24 Macbeth colorchecker chart data set with a tolerance of 
±0.5 (cubes in XYZ with side 1) – top, and strict metamer sets in a 10D linear 
model basis (matching the paramer set centres) - bottom. 

Fig. 6 (top) then shows the resulting reflectances (a subset of 
1000 of the extreme reflectances is plotted in each case for 
illustrative purposes). Again, like in Fig. 3, the large variability and 
high frequency of the unconstrained samples is clearly visible. Fig 
6. (bottom) then also plots the corresponding, but exact metamer set 
reflectances using a 10D linear model basis which, as expected show 
smoother behavior compared to the full, unconstrained paramer sets. 
Note that, to obtain solutions for all 24 patches below, the metamer 
set computation that relies on a linear model basis had to use 10 
dimensions in this case. Fewer dimensions would have left some of 
the patches without solutions. Part of the challenge with linear 
model bases is precisely the uncertainty about the exact 
dimensionality of a data set – another form of fragility of this 
formulation (exact metamerism, linear model basis). 

Finally, Fig. 7, shows the mismatch volumes of the paramer 
reflectances from Fig. 6 (top) under illuminant A, shown here in CIE 
L*a*b* space. 

One important aspect of the unconstrainted, fully–dimensional 
and therefore spectrally–volumetric computation of paramer sets is 
that volumes can be computed independently of a change of 
conditions and natively in reflectance space. Previous studies were 
constrained to perform these computations in a second projected 
space, e.g., as shown above, by changing from CIE D50 to CIE A. 
However, since the present solution computes paramer sets with 
spectral volume in their own right, we can evaluate them as such. 
Fig. 8 illustrates this – and can be compared against Fig. 5 – here we 
see the magnitude of the paramer volumes plotted at the locations of 
the target XYZ centres. 

 
Figure 7: Paramer mismatch volumes shown in CIE Lab space as projected to 
CIE illuminant A, corresponding to reflectances in Fig. 5 that result in 
tristimulus values in XYZ cubes in Figure 4 that match the 24 Macbeth 
colorchecker chart data set with a tolerance of ±0.5 (cubes in XYZ with side 
1). 

With the introduction of a tolerance in the computation of 
paramer sets, the choice of this value becomes important. As 
mentioned in the introduction, it can be directly related to JNDs or 
noise, such as measurement or repeatability noise – both in 
magnitude and geometry (Clouet, 2020). For example, typical 
spectrophotometers can have a measurement repeatability of 
between 0.01 to 0.1 ∆E2000 – meaning that measuring the same 
surface multiple times. This means that the same surface can result 
in tristimulus values that vary within a neighborhood of this 
magnitude and for all intents and purposes can be considered 
identical, even if not mathematically so. In colorimeters and 
cameras the measurement or capture repeatability can be even 
higher. 
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Figure 8: Paramer mismatch volumes shown in XYZ space (XZ projection), 
corresponding to reflectances in Fig. 5 that result in tristimulus values in XYZ 
cubes in Figure 4 that match the 24 Macbeth colorchecker chart data set with 
a tolerance of ±0.5 (cubes in XYZ with side 1). 

Both the magnitude and geometry of noise or tolerance will 
clearly impact paramer set volumes and Fig. 9 illustrates this 
difference for two values (maintaining the set-up used so far: CIE 
D50, 1931 color matching functions), a tolerance of ±0.05 and a 
tolerance of ±0.95, again in CIE XYZ space. As expected, the 
smaller the tolerance (e.g., 0.05) the smaller the volume (as shown 
in this projection to CIE A). On a more qualitative and intuitive note, 
the larger the tolerance (e.g. 0.95) the more “bulged out” the 
mismatch volumes. While several aspects affect the shape and 
volume of mismatch volumes (e.g., the source and destination 
projection spaces such as CIE D50 vs CIE A), again, intuitively, the 
larger the tolerance the further a departure from the n-m dimensional 
subspace solution of a strict metamer set. 

Fig. 9 shows the impact of the tolerance value (for a cube 
neighborhood in XYZ) in qualitative terms for two extreme values 
– 0.05 and 0.95 – while Fig. 10 shows the same relationship in 
quantitative terms for intermediate values. Here, paramer sets for the 
same set-up (Macbeth  ColorChecker chart colorimetries as anchors, 
CIE D50, 1931 color matching functions) and tolerances from 0.05 
to 0.95 in 0.1 steps in XYZ are computed and a comparison between 
traditional metamer mismatch volumes (as computed by projecting 
to a tristimulus space by changing the illuminant from CIE D50 to 
CIE A) vs the direct spectral volume of paramer mismatch volumes 
is shown. First, it can be observed that the larger the tolerance the 
larger the volumes – this is as expected and simply means that the 
wider the allowed colorimetric correspondence the more 
reflectances correspond and this is true in spectral volume terms as 
in illuminant-mismatch volume terms. However, what can also be 
seen is that the relationship between spectral volume and illuminant-
mismatch volume is not straightforward and does not seem to follow 
a simple relationship, while being highly correlated. 

In the final paper we will share a more detailed analysis of this 
relationship and explore how it varies for other changes in 
illuminant. 

 

 
Figure 9: Paramer mismatch volumes shown in CIE Lab space (a*b* 
projection), corresponding to the 24 Macbeth colorchecker chart data set with 
a tolerance of ±0.05 (top) and ±0.95 (bottom). 

 
Figure 10: Paramer set mismatch spectral-volumes vs projected tristimulus 
volumes for 10 paramer tolerances centered around the 24 Macbeth 
Colorchecker chart colorimetries (CIE D50, 1931). The markers indicate 
tolerance levels (red circle = ±0.05, blue square ±0.95). 
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Discussion and conclusions 
This paper revisits the topic of metamerism, with a particular 

focus on its relation to real-world conditions and computational 
robustness. First, a method to overcome the computational fragility 
of exact metamer sets was presented via an approximate approach 
using linear programming. Next, a generalization of the metamer 
set, allowing for tolerances to the exact tristimulus target and 
resulting in a paramer set, were shown to allow for a direct and exact 
computation, while at the same time being a better mechanism in 
real-world situations where exact mathematical matches are never 
the case due to measurement and repeatability noise and the human 
visual system’s or any imaging system’s discrete response to 
stimulus change. 

While better real-world representation and computational 
robustness are clear benefits, the purpose of this paper was also to 
emphasize the importance of taking uncertainty into account and to 
show how doing so is ultimately also advantageous. 

The introduction of this approach and the formulation of a 
solution also open up the possibility of computing and operating 
with paramer set intersections. In exact metamer sets, intersections 
are fragile like the direct single metamer set computation itself 
(since a metamer set is a degenerate n-m dimensional hyperplane 
without volume). Instead, using the paramer set definition and 
computation shown here allows for a robust solution that can also 
be parametrized by tolerance level. E.g., what is the tolerance level 
at which two paramer sets intersect? Conversely, which paramer sets 
intersect at a given tolerance level? 

There are many applications of paramer set intersections that 
will be explored in the future, including: 

Spatial paramer sets – i.e., computing paramer sets that take 
spatially–neighboring responses into account. In most real-world 
cases, responses are not isolated data points but are embedded in 
context, such as neighboring pixels in a digital image. Using this 
context is another way to help deal with and benefit from uncertainty 
and noise, and is likely to result in more robust computation and 
potentially better color correction and camera characterization. 

Illuminant estimation – varying the reference conditions for 
which paramer sets are computed and evaluating their volume could 
lead to intuitions on the likelihood of illuminants or materials – the 
larger the volumes the more likely an illuminant. 

Material and illuminant edges – computing intersections of 
paramer sets in an image, could help distinguish material (e.g., 
surface reflectance) vs illuminant (e.g., light source spectral power 
distribution) changes and therefore help identify where in an image 
a change in illuminant or material (or both) occur. With a known 
illuminant, instead, material edges can be identified by evaluating 
paramer set intersections – the smaller the intersections the more 
likely a material edge. 
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