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Abstract 

In this research we compare chromatic contrast sensitivity 

models for two separate datasets and for the pooled dataset. They 

were obtained from two studies employing a very similar 

experimental paradigm. The data represent threshold visibilities of 

chromatic Gabor patterns varying in spatial frequency, background 

chromaticity, direction of color modulation and luminance, at 

constant stimulus size. Using the extended data set, we reconfirm 

our previously reported finding that a model based on color-

opponent contrast signals is an improvement over a cone contrast 

model. However, when linear background scaling in classic cone 

contrast is replaced by nonlinear background scaling, an 

improvement of almost similar size is obtained. The results of this 

study can be of interest for the development of vision models 

employing the processing of spatio-chromatic information.  

Introduction 
The work described in this paper is a follow-up on earlier work 

relating to the modeling of chromatic visibility threshold data. Such 

thresholds are typically measured using basic visual stimuli 

(Gabors) featuring differences in spatial frequency and color 

modulation to a homogenous background. Our line of research 

started by the study of Vogels & Lambooij [1] who measured 

chromatic visibility thresholds on three background colors (located 

near the black body locus) at fixed luminance. The spatial 

frequencies employed in that study extended to the lower end 

because of its relevance for lighting applications where the visibility 

of color non-uniformities (i.e. low spatial frequencies) is undesired. 

In the modeling of that dataset, Lucassen et al. [2] found that the 

visibility thresholds are best described by a model incorporating 

opponent-like chromatic contrast signals. Since this requires the 

processing of signals at a stage beyond the cone photoreceptors, the 

model was termed the post-receptoral contrast model. Recently 

Mantiuk et al. [3] specifically tested the performance of such a 

model against the conventional cone contrast model on the 

combined data from 5 independent datasets. They found comparable 

performance for the two model types, but only when using mean 

luminance (instead of the chromatic signal itself) as normalizing 

factor in the post-receptoral model, otherwise the data fits with the 

post-receptoral model were much worse. Among the 5 datasets was 

the one of Xu et al. [4,5], which in essence is an extension of the 

Vogels & Lambooij [1] dataset. It was obtained using the same 

methodology, employing another five background chromaticities 

and luminance levels. Given the high similarity in methodology for 

these two studies, we here take a closer look at the Vogels & 

Lambooij [1] and Xu et al. [4] datasets. For the separate and pooled 

datasets, we reconfirm our earlier result that post-receptoral contrast 

gives better data descriptions than cone contrast. Interestingly, we 

also show that the two model approaches only differ in the way that 

they normalize cone increments. When linear scaling by the 

background (as is done in the conventional cone contrast model) is 

made nonlinear, almost the same performance level as that of the 

post-receptoral model is reached.    

 

Summary of experimental conditions 
The data used in this paper was obtained in two separate 

experiments that shared the same methodology. The experimental 

set-up is described in detail elsewhere [1,2,5], here we only give a 

summary. Observers viewed an LCD monitor (NEC MultiSync, 10-

bits per primary, 2560×1440 pixels) on which chromatic Gabor 

patterns on a homogenous background color of the same luminance 

were displayed. These Gabors are gratings with a sinewave color 

modulation, spatially blended into the background with a Gaussian 

envelope (see Fig. 1 for an example). The patterns varied in spatial 

frequency and the direction of color modulation with respect to the 

background. Stimulus size was fixed, implying that when varying 

spatial frequency, also the number of visible cycles covaried. The 

patterns were oriented either horizontally or vertically. While 

adapted to the background color, observers indicated the perceived 

orientation.  A staircase procedure was used to control the chromatic 

contrast of the patterns and allowed measurement of the 75% correct 

detection threshold. There are two main differences between the 

experiments. One is the viewing distance, which was 0.5 m for the 

Xu et al. [4] experiment, and 1 m for the Vogels & Lambooij [1] 

experiment. The other was the background luminance, which varied 

for the Xu et al. [4] experiment, while in the Vogels & Lambooij [1] 

study it was fixed. Table 1 summarizes the experimental conditions. 

  

Table 1: Experimental conditions underlying the two data sets. 

Data set 
adapting 

background 
u’ v’ 

Y  
(cd/m2) 

observers 
spatial 

frequencies 
color 

directions 

Vogels & 
Lambooij [1] 

white 2600 K 0.2670 0.5319 108 18 6 4 

white 3800 K 0.2291 0.5106 108 18 6 4 

white 5700 K 0.2035 0.4796 108 18 6 4 

Xu et al. [4] 

white 6500 K 0.1978 0.4695 72 20 7 6 

green 0.1449 0.4758 24 19 7 6 

red 0.3155 0.5016 14.1 17 7 6 

blue 0.1700 0.3772 8.8 20 7 6 

yellow 0.2109 0.5234 50 20 7 6 

 

https://doi.org/10.2352/issn.2169-2629.2021.29.99
©2021 Society for Imaging Science and Technology

9929th Color and Imaging Conference Final Program and Proceedings



 

 

 
 
Figure 1: Stimulus example at high contrast for the 5700 K background in the 
Vogels & Lambooij [1] study. Observers had to indicate perceived orientation 
of the stimulus which could be either horizontal or vertical.  

Figure 2: Color centers (adapting backgrounds) in the CIE 1976 u’v’ color 
space. The dashed triangle indicates the color gamut for the LCD monitors used 

in the experiments. 

 

Data modelling 
Following our earlier work [2], from the cone excitations of the 

background and the Gabor threshold increment we compute a 

detection signal from probability summation of weighted contrast 

signals in chromatic channels (eq.1). Since we are dealing with 

stimuli at isoluminance, an achromatic channel is omitted here from 

the usual three, leaving two chromatic channels to contribute to the 

detection signal: 

 

𝑠𝑖𝑔𝑛𝑎𝑙 = ( |𝛥𝐵 𝑆𝐵(𝑓)|𝑝 + |𝛥𝐶  𝑆𝐶(𝑓)|𝑝 )
1
𝑝 (1) 

where Δ and S denote contrast and sensitivity, respectively, with 

subscript B or C for the two chromatic channels1, f is spatial 

frequency and p the coefficient in Minkowski summation. In words, 

 

 

 
1In our previous work we defined three channels with arbitrary 

symbols A,B,C. A was reserved for the achromatic channel, leaving 

B and C for the two chromatic channels. 

the contrast signals are multiplied by a frequency-dependent 

sensitivity factor, the absolute value of the products is raised to 

power p, summed, and raised to the power 1/p. For p=2, eq.(1) 

represents  a Euclidian distance. The higher the value of p, the more 

the detection signal is dominated by the largest of the two 

contributing components. 

As in the previous papers, two contrast models are studied, the 

cone contrast model and the post-receptoral contrast model. They 

differ in the stage at which the contrast signals are calculated, either 

at the cone receptor level or at a post-receptor level (i.e. after 

recombination of the receptor signals). The values of the L,M,S cone 

excitations that appear in the equations hereafter were obtained by 

converting the CIE 1931 XYZ color specifications according to 

 

 
(

𝐿
𝑀
𝑆

) = (
0.34687 1.07301 −0.04871

−0.59010 1.80232 0.15324
0.02061 −0.04607 1.32477

) (
𝑋
𝑌
𝑍

)  (2) 

 

which was derived for the NEC display [2]. 

 

Cone contrast 
The cone contrast model converts Weber-like contrast signals 

within each cone type into contrast signals in two chromatic 

channels (B, C) by a 2x3 color matrix 

 

 

(
𝛥𝐵

𝛥𝐶
) = (

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3
) (

(𝐿𝑡 − 𝐿𝑏)/𝐿𝑏

(𝑀𝑡 − 𝑀𝑏)/𝑀𝑏

(𝑆𝑡 − 𝑆𝑏)/𝑆𝑏

)  . (3) 

 

The right-hand side column vector holds the Weber fractions in cone 

excitations, i.e. the threshold (subscript t) increment divided by the 

background value (subscript b).  

 

Post-receptoral contrast 
In the post-receptoral contrast model, the cone signals for the 

background and the threshold increment are first converted into 

cone ‘opponent’ channels 

 

 
(

𝐵
𝐶

) = (
𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3
) (

𝐿
𝑀
𝑆

)   (4) 

after which the contrast signals are constructed 

 

𝛥𝐵 =  (𝐵𝑡 − 𝐵𝑏)/𝐵𝑏 (5a) 

𝛥𝐶 =  (𝐶𝑡 − 𝐶𝑏)/𝐶𝑏 (5b) 

 

Parameter optimization 
Optimization of the model parameters is performed by 

minimizing the residual sum of squares (RSS) of differences 

between model (eq.(1)) and data 

𝑅𝑆𝑆 = ∑(𝑠𝑖𝑔𝑛𝑎𝑙𝑗 − 1)
2

𝑛

𝑗=1

 (6) 

100 Society for Imaging Science and Technology



 

 

with j running over the data set (n is the number of data points). 

Equation (6) implies that in the case of a perfect model, all detection 

signals would equal 1. This is convenient because the value of 1 is 

then associated with the threshold visibility, and values larger or 

smaller than 1 indicate above or below visibility threshold, 

respectively.  

We report model errors in terms of RSS and in terms of RMSE 

(root mean square error) and AIC (Akaike Information Criterion 

[6]). RMSE is the square root of RSS/n. For AIC we use the formula 

with sample size correction as detailed in [2]. Both RMSE and AIC 

are derived from RSS, but we prefer AIC since it includes a penalty 

for the number of free model parameters and provides a means to 

calculate relative likehood for a set of models. 

Results 

Average observer 
Table 2 and Figure 3 capture the results of the model 

optimizations on the data averaged across observers. We show 

results for estimations on the separate models (top panels in Fig. 3) 

and the models on the pooled dataset (bottom panels in Fig. 3). As 

Table 2 shows, model errors in terms of RSS and RMSE are smaller 

for the post-receptoral contrast model. This holds for the model 

estimations on the separate datasets as well as on the pooled 

datasets. The same conclusion is reached when analyzing the data in 

terms of Akaike’s Information Criterion (AIC). AIC describes the 

information loss in a model of data. The smaller the loss, the more 

likely the model is approaching the true model underlying the 

dataset. For example, the AIC values for the pooled dataset are -732 

and -763 for the cone contrast and post-receptoral contrast models, 

respectively. As a rule of thumb, a difference in these values larger 

than 2 indicates a significant difference in model likelihood. With a 

difference of 29 units in this case, this points to a very high 

difference in probability, in favor of the post-receptoral model (the 

lower the AIC value, the better). The table also shows the relative 

likelihood of the models, computed as exp(0.5*(AICmin-AICi) with 

AICmin the minimum AIC value from the models being compared. 

When post-receptoral contrast is considered as having a (relative) 

probability of 1, the related cone contrast models only have 

probabilities in the order of 10-5 to 10-7. In all, our earlier finding on 

the Vogels & Lambooij [1] dataset is reconfirmed on the Xu et al. 

[4] dataset. 
 

 

 
Figure 3: Chromatic contrast sensitivity (SB and SC in eq.(1)) estimated with 
the cone contrast model (left) and post-receptoral contrast model (right) for 

the average observer. The model parameters were estimated either on the 
separate data sets (top panels) or on the pooled data (bottom panels). Data 

points are connected for clarity. See Table 2 also. 
 

The contrast sensitivity graphs shown in Fig.3, obtained for the 

average observer data, show the typical shape with the leftmost data 

points lowered. As explained in previous papers [2,5] this is related 

to the fact that at the lowest spatial frequencies, the number of 

visible cycles in the fixed stimulus size (limited by the physical 

dimensions of the stimulus display) is so small that they determine 

the threshold. They require a higher threshold contrast, hence a 

lower sensitivity. For higher spatial frequencies, the number of 

visible cycles is higher and threshold contrast is then determined by 

spatial frequency. For the separate model fits, a clear difference in 

absolute value of the contrast sensitivity is noticed. Also, the peak 

sensitivity for the Xu et al. [4] dataset is shifted somewhat to a lower 

spatial frequency (this is also the case for the pooled dataset). It is 

related to the fact that the observers’ viewing distance in the Xu et 

al. [4] experiment was half that in Vogels & Lambooij [1], while the 

physical stimulus size was comparable, and therefore the number of 

cycles was higher, as shown in Fig. 4.  

 

 

Table 2: Datasets and estimated parameters. n is number of data points, averaged across observers. CC=cone contrast, PR=post-
receptoral contrast. pars=number of free model parameters. b1..c3 refer to the elements of the 2x3 color matrix in eqns.(2-3). 
mink=minkoswki coefficient in eq. (1). RSS=residual sum of squares (eq.(6)). RMSE=root mean square error. AICc=Akaike Information 
Criterion corrected for small sample size. 

Dataset n model pars 
color matrix 

mink RSS RMSE AICc 
AIC 

relative 
likelihood b1 b2 b3 c3 c2 c3 

Vogels & 
Lambooij 

72 
CC 19 0.730 -0.413 -0.0054 5.830 3.059 0.191 2.27 1.06 0.121 -251 5.5E-05 

PR 19 0.750 -0.013 -0.017 0.562 0.284 4.233 2.06 0.81 0.106 -271 1 

Xu et al. 210 
CC 21 -0.169 0.055 0.0001 3.665 1.277 0.705 1.63 14.56 0.263 -514 1.6E-06 

PR 21 0.407 0.196 -0.011 0.204 -0.187 0.620 1.41 13.11 0.250 -536 1 

Pooled 282 
CC 33 -0.275 0.069 0.001 4.046 1.814 0.506 1.83 16.10 0.239 -732 1.9E-07 

PR 33 0.333 0.215 -0.011 0.063 -0.030 0.234 1.60 14.42 0.226 -763 1 
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Figure 4: Number of visible cycles in the stimulus area for the different 

spatial frequencies used in the two studies. The difference in number of 
cycles is explained by the different viewing distances, while physical 
stimulus area was the same. 

 

Individual observer 
 Here we show results of the parameter estimations on the 

individual observer data. As an example, in Figure 5 the root mean 

square values (RMSE) are plotted for the data of each participant in 

the Vogels & Lambooij [1] experiment. Figure 6 does the same for 

the participants in the Xu et al. [4] experiment.  

 

 
 
Figure 5: Root mean square error (RMSE) for each participant, for the two 

contrast models. Background 5700K in the Vogels & Lambooij [1] dataset. 
The horizontal dashed lines indicate the mean RMSE values for the contrast 
models, averaged across the individual observer estimations. 

 

The examples show the conditions with the most comparable 

background color, 5700 K in [1] and 6500 K in [4], other conditions 

show similar results. The dashed horizontal lines in the figures 

represent the mean RMSE values when averaged over the RMSE 

values obtained for the individual participant data. Both figures 

show that the mean value for the post-receptoral model is lower than 

that of the cone contrast model. To test the statistical significance of 

this difference we applied a paired t-test on the distribution of RMSE 

values (Table 3). For all background conditions we find a significant 

difference at the 95% confidence level (p<0.05 in the last column of 

Table 3) between the mean RMSE values of the cone contrast and 

the post-receptoral contrast model. Note that the mean RMSE values 

for the Xu et al. [4] study are higher than in Vogels & Lambooij [1]. 

This is explained by the fact that in the former more spatial 

frequencies and color modulation directions are measured (see 

Table 1). For one background color, there are 6x4=24 datapoints in 

Vogels & Lambooij [1], and 7x6=42 datapoints in Xu et al. [4]. 

Interestingly, both studies show variations between individual 

participants that range about a factor of 2-3 in terms of RMSE (or a 

factor of 5 in terms of RSS). What exactly lies underneath these 

variations is not known, but at least part of it may reflect individual 

differences in chromatic response of color normal observers, as can 

be quantified by individual color matching functions [7]. 

In Table 4 we show the analysis based on AIC values. The mean 

AIC values reported were first calculated on the individual observer 

data and then averaged. Again, the relative likelihood is strongly in 

favor of the post-receptoral contrast model. 

 

 

 

Table 3: Mean RMSE values for the model estimations on 
individual observer data. CC=cone contrast, PR=post-receptoral 
contrast. The last columns shows the p value on a paired t-test 
for testing significant difference in the mean RMSE values of the 
two contrast models.  

Dataset 
Back-

ground 

Mean RMSE p on paired 
 t-test CC PR 

Vogels & 
Lambooij 

2600 K 0.180 0.173 0.034 

3800 K 0.187 0.172 0.033 

5700 K 0.184 0.171 0.024 

Xu et al. 

6500 K 0.257 0.253 0.002 

green 0.280 0.270 0.025 

red 0.243 0.235 0.035 

blue 0.236 0.219 0.019 

yellow 0.236 0.224 0.009 

 
Figure 6:  Root mean square error (RMSE) for each participant, for the two 
contrast models. Background 6500K in the Xu et al. [4] dataset. The 
horizontal dashed lines indicate the mean RMSE values for the contrast 
models, averaged across the individual observer estimations. 
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Table 4: Mean AIC values for the model estimations on individual 
observer data. Last two columns show the relative likelihood of 
the two models. 

Dataset 
Back-

ground 

Mean AICc Relative likelihood 

CC PR CC PR 

Vogels & 
Lambooij 

2600 K -277.1 -283.2 4.7E-02 1 

3800 K -274.7 -289.0 7.9E-04 1 

5700 K -275.2 -285.6 5.5E-03 1 

Xu et al. 

6500 K -852.6 -874.1 2.1E-05 1 

green -831.4 -846.4 5.5E-04 1 

red -891.9 -904.5 1.8E-03 1 

blue -900.8 -933.7 7.2E-08 1 

yellow -908.1 -928.4 3.9E-05 1 

 

Cone contrast with nonlinear background 
normalization 

Our results reconfirm, both on the average observer data and 

the individual observer, that the cone contrast model can be 

improved upon by processing contrast at the opponent color level. 

But what is it that makes this post-receptoral contrast model a better 

descriptor of the data? How is it different from the cone contrast 

model? To answer that, we looked in more detail into the contrast 

term of the post-receptoral model. For example, the term  𝐵𝑡 − 𝐵𝑏 

in the nominator of eq.(5a) can be rewritten as 

 

𝐵𝑡 − 𝐵𝑏 = 𝑏1𝐿𝑡 + 𝑏2𝑀𝑡 + 𝑏3𝑆𝑡 − 
                  (𝑏1𝐿𝑏 + 𝑏2𝑀𝑏 + 𝑏3𝑆𝑏) 

 

                  = 𝑏1(𝐿𝑡 − 𝐿𝑏) + 𝑏2(𝑀𝑡 − 𝑀𝑏) + 𝑏3(𝑆𝑡 − 𝑆𝑏) 

(7) 

 

Here we recognize the cone specific increment terms 𝐿𝑡 − 𝐿𝑏  etc. 

which are also present in the cone contrast model (eq.(3)). What is 

different in the two models is how these terms are normalized. In the 

cone contrast model it is normalized by the background value in the 

same cone type, whereas in the post-receptoral model it is 

normalized by a mixture of the background values from different 

cone types (as set by the color matrix in eq.(4)). Apparently, 

normalization by the linear background value in the same cone type 

is suboptimal. This invited the idea to normalize the increment terms 

in the cone contrast model with the background value in a nonlinear 

fashion:  

 

(
𝛥𝐵

𝛥𝐶
) = (

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3
) (

(𝐿𝑡 − 𝐿𝑏)/𝐿𝑏
𝑘

(𝑀𝑡 − 𝑀𝑏)/𝑀𝑏
𝑘

(𝑆𝑡 − 𝑆𝑏)/𝑆𝑏
𝑘

)   (8) 

in which the background cone excitations are raised to the power of  

k. A consequence of this is that for the different background 

luminances in the Xu et al. [4] study, the absolute level of the cone 

excitations is no longer canceled out as in a linear Weber fraction. 

Also, different luminance levels lead to different retinal illuminance 

levels because of a change in pupil size. To test the performance of 

the model in eq.(8), we therefore first corrected the cone excitation 

values with a factor that takes into account the conversion from 

corneal luminance to retinal illuminance, as shown in Table 5. The 

correction factor (last column in Table 5) is the ratio of the retinal 

illuminance to luminance. Retinal illumination (in trolands) is 

calculated as the product of luminance (L) and pupil area (in mm2) 

 

𝑇 = 𝐿
𝜋

4
𝑑2 (9) 

  

with d pupil diameter in mm.  The pupil diameter was estimated with 

the Watson & Yellot [8] formula, entering binocular viewing, age 

30, and the proper stimulus dimensions in degrees visual angle for 

the two studies. Using the corrected cone excitations as input for the 

model in eq.(8) we find optimized weighting factors k=0.56 for the 

Vogels & Lambooij [1] study, and 0.89 for the Xu et al. [4] study. 

Table 6 summarizes the results in terms of RSS (residual sum of 

squares) and AIC (Akaike’s Information Criterion). The latter 

accounts for the number of free parameters in the models [6]. 

Generally, the lower the AIC value, the better the model represents 

the data. For comparison, the RMSE values for the cone contrast and 

post-receptoral contrast models in Table 6 are copied from Table 2. 

When comparing the RMSE values, the cone contrast model with 

nonlinear background normalization gives an improvement over 

linear cone contrast in the same order of magnitude as the post-

receptoral contrast model. However, the AIC values for the post-

receptoral model are still some 5 units lower, indicating a higher 

likelihood for that model. The relative likelihood of the cone 

contrast model with non-linear background scaling is calculated as 

exp(0.5*ΔAIC)=exp(0.5*-5)=0.082. In other words, the post-

receptoral contrast model is about 12 times as likely to be the model 

that best minimizes the loss of information in describing the dataset.  

Table 5: Conversion factor (last column) to convert from 
background luminance to retinal trolands, using pupil size (d) 
estimated by the Watson & Yellot [8] formula. 

 

Table 6: Model performance in terms of RMSE and AIC for the 
two datasets and different contrast models. 

dataset 
Cone contrast 

Post-receptoral 
contrast 

Cone contrast 
nonlin backgr 

RMSE AICc RMSE AICc RMSE AICc 

Vogels & 
Lambooij 

0.121 -251.1 0.106 -270.5 0.107 -265.9 

Xu et al. 0.263 -513.5 0.250 -535.6 0.251 -530.6 

Conclusion 
Based on an analysis of the datasets from the Vogels & 

Lambooij [1] and Xu et al. [4] studies on chromatic contrast 

visibility, we reconfirm our previously reported finding that a post-

receptoral contrast model outperforms the cone contrast model. This 

was concluded after considering both the individual and average 

observer data. The cone contrast model however can be improved 

when applying a nonlinear background weighting (per cone type) 

but is still outperformed by the post-receptoral model. 

Dataset 
Adapting 
backgr 

L 
(cd/m2) 

d 
(mm) 

T 
(Td) 

factor 
T/L 

Vogels & 
Lambooij 

[1] 

2600 K 108 3.42 992.1 9.19 

3800 K 108 3.42 992.1 9.19 

5700 K 108 3.42 992.1 9.19 

Xu et al. 
[4] 

6500 K 72 3.06 529.5 7.35 

green 24 3.50 230.9 9.62 

red 14.1 3.76 156.6 11.10 

blue 8.8 4.00 110.6 12.57 

yellow 50 3.20 402.1 8.04 
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Discussion 
Chromatic contrast sensitivity models deal with the processing 

of spatial color information and therefore are relevant for topics like 

image quality and uniform color space. Having an accurate model is 

important, as it can help to better predict the visibility of chromatic 

distortions. We have used different metrics for model accuracy in 

this paper, all based on the residual sum of squares (RSS). Model 

comparison using the AIC statistic clearly indicates higher 

likelihood for the post-receptoral contrast model, both on the 

separate and pooled datasets and both for the average and individual 

observer data. In terms of RSS, an improvement of almost similar 

size to the cone contrast model can be achieved when applying a 

nonlinear background normalization to the cone increment 

threshold. Such a nonlinear weighting of the increment threshold is 

well known in visual science. The De Vries-Rose law [9,10] for 

instance uses a square root on the background intensity, which 

corresponds to a slope of 0.5 in a log-log plot of threshold increment 

versus background intensity. This law applies to low light levels 

where increment thresholds are determined by quantal fluctuations 

in the light. At higher light levels, linear weighting in Weber’s law 

(slope 1 in log-log plot) applies. The nonlinear weight factors of 

0.56 and 0.89 that we determined for our datasets are in between 0.5 

and 1 and might thus be interpreted as relating to light levels (within 

each cone type) in the transition area between the De Vries-Rose 

and Weber’s law [e.g. 11,12]. The fact that we found a higher value 

(0.89 vs 0.56) for the Xu et al. [4] dataset might be explained by the 

shorter viewing distance (0.5 vs 1 m), leading to a larger retinal field 

of view of the LCD monitor. So, in the Xu et al. [4] experiment the 

spatially integrated retinal illumination was higher, which may 

position it closer to the Weber region than the De Vries-Rose region. 

With respect to the optimization procedures (performed in 

Excel and Matlab), it would make sense to use a template function 

as in the studies by Mantiuk et al. [3] and Wuerger et al. [13] to fit 

the shape of the contrast sensitivity curve, as it can reduce the 

number of free parameters, in particular for the model fits on pooled 

datasets with differing values for the measured spatial frequencies. 

In those studies, the pooled data represent widely varying 

experimental conditions like luminance level and stimulus size, 

which may partly explain why the Mantiuk et al. [3] study did not 

find a higher performance of the post-receptoral contrast model.  

It will require more work however to draw final conclusions 

regarding model differentiation. More data might not be the solution 

here per se, perhaps insights from physiology can already put the 

models in better context. For example, we calculate model responses 

based on cone inputs, but we do nothing with the fact that cones 

receive feedback signals from horizontal cells which interconnect 

them, thereby modulating the cone outputs (e.g. [14,15]). 
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